Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

The Arason invariant and mod 2 algebraic cycles


Authors: Hélène Esnault, Bruno Kahn, Marc Levine and Eckart Viehweg
Journal: J. Amer. Math. Soc. 11 (1998), 73-118
MSC (1991): Primary 11E81; Secondary 55R40
DOI: https://doi.org/10.1090/S0894-0347-98-00248-3
MathSciNet review: 1460391
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $k$ be a field, $X$ over $k$ a smooth variety with function field $K$ and $E$ a quadratic vector bundle over $X$. Assuming that the generic fibre $q$ of $E$ is in $I^3K\subset W(K)$, we compute the image of its Arason invariant \[ e^3(q)\in H^0(X,{\mathcal H}_{\mathrm {\acute {e}t}}^3({\mathbb Z}/2))\] in $CH^2(X)/2$ by the $d_2$ differential of the Bloch-Ogus spectral sequence. This gives an obstruction to $e^3(q)$ being a global cohomology class.


References [Enhancements On Off] (What's this?)

  • Jón Kr. Arason, Cohomologische invarianten quadratischer Formen, J. Algebra 36 (1975), no. 3, 448–491 (French). MR 389761, DOI https://doi.org/10.1016/0021-8693%2875%2990145-3
  • J. Barge, Une definition cohomologique de l’invariant d’Arason, preprint, 1995.
  • Spencer Bloch and Arthur Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975). MR 412191
  • Spencer Bloch and Kazuya Kato, $p$-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 107–152. MR 849653
  • R. Bott On torsion in Lie groups, Proc. Acad. Sci. USA 40 (1954), 586–588.
  • Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981 (French). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 647314
  • C. Chevalley, Sur les décompositions cellulaires des espaces $G/B$, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 1–23 (French). With a foreword by Armand Borel. MR 1278698
  • J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) Proc. Sympos. Pure Math., vol. 58, Amer. Math. Soc., Providence, RI, 1995, pp. 1–64. MR 1327280
  • Jean-Louis Colliot-Thélène and Wayne Raskind, ${\scr K}_2$-cohomology and the second Chow group, Math. Ann. 270 (1985), no. 2, 165–199. MR 771978, DOI https://doi.org/10.1007/BF01456181
  • J.-L. Colliot-Thélène, R. Hoobler, and B. Kahn, The Bloch-Ogus-Gabber theorem, to appear in: Proc. Fields Institute (Volume in memory of R. Thomason).
  • Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551
  • P. Deligne, unpublished notes of IHES lectures, 1979.
  • Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
  • Michel Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287–301 (French). MR 342522, DOI https://doi.org/10.1007/BF01418790
  • Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697
  • E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462. Engl. translation: AMS Transl. Ser. II 6 (1957), 111–244.
  • Hélène Esnault, Bruno Kahn, and Eckart Viehweg, Coverings with odd ramification and Stiefel-Whitney classes, J. Reine Angew. Math. 441 (1993), 145–188. MR 1228615
  • H. Freudenthal, Zur Berechnung der Charaktere der halbeinfachen Lieschen Gruppen. II, Indag. Math. 16 (1954), 487–491.
  • William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
  • Ofer Gabber, Gersten’s conjecture for some complexes of vanishing cycles, Manuscripta Math. 85 (1994), no. 3-4, 323–343. MR 1305746, DOI https://doi.org/10.1007/BF02568202
  • Henri Gillet, Riemann-Roch theorems for higher algebraic $K$-theory, Adv. in Math. 40 (1981), no. 3, 203–289. MR 624666, DOI https://doi.org/10.1016/S0001-8708%2881%2980006-0
  • Michel Gros, Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique, Mém. Soc. Math. France (N.S.) 21 (1985), 87 (French, with English summary). MR 844488
  • A. Grothendieck, Torsion homologique et sections rationnelles, exposé 5 in Séminaire Chevalley, “Anneaux de Chow et applications", Paris, 1958.
  • Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
  • Bruno Harris, Torsion in Lie groups and related spaces, Topology 5 (1966), 347–354. MR 206982, DOI https://doi.org/10.1016/0040-9383%2866%2990026-7
  • James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. MR 0396773
  • Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 0491680
  • Bill Jacob and Markus Rost, Degree four cohomological invariants for quadratic forms, Invent. Math. 96 (1989), no. 3, 551–570. MR 996554, DOI https://doi.org/10.1007/BF01393696
  • Uwe Jannsen, Mixed motives and algebraic $K$-theory, Lecture Notes in Mathematics, vol. 1400, Springer-Verlag, Berlin, 1990. With appendices by S. Bloch and C. Schoen. MR 1043451
  • J. F. Jardine, Higher spinor classes, Mem. Amer. Math. Soc. 110 (1994), no. 528, vi+88. MR 1211372, DOI https://doi.org/10.1090/memo/0528
  • J. P. Jouanolou, Riemann-Roch sans dénominateurs, Invent. Math. 11 (1970), 15–26. MR 332789, DOI https://doi.org/10.1007/BF01389802
  • Bruno Kahn, Descente galoisienne et $K_2$ des corps de nombres, $K$-Theory 7 (1993), no. 1, 55–100 (French, with English and French summaries). MR 1220427, DOI https://doi.org/10.1007/BF00962794
  • B. Kahn, Applications of weight-two motivic cohomology, Documenta Math. 1 (1996), 395–416.
  • Ahmed Laghribi, Isotropie de certaines formes quadratiques de dimensions $7$ et $8$ sur le corps des fonctions d’une quadrique, Duke Math. J. 85 (1996), no. 2, 397–410 (French). MR 1417621, DOI https://doi.org/10.1215/S0012-7094-96-08516-6
  • T. Y. Lam, The algebraic theory of quadratic forms, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1980. Revised second printing; Mathematics Lecture Note Series. MR 634798
  • Y. Laszlo and C. Sorger, The line bundles on the moduli of parabolic $G$-bundles over curves and their sections, Ann. Sci. Ec. Norm. Sup. (4) 30 (1997), no. 4, 499–525.
  • Marc Levine, The indecomposable $K_3$ of fields, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 2, 255–344. MR 1005161
  • Marc Levine, The algebraic $K$-theory of the classical groups and some twisted forms, Duke Math. J. 70 (1993), no. 2, 405–443. MR 1219818, DOI https://doi.org/10.1215/S0012-7094-93-07008-1
  • S. Lichtenbaum, Values of zeta-functions at non-negative integers, Lect. Notes in Math. 1068, Springer, Berlin, 1984, 127–138.
  • Stephen Lichtenbaum, The construction of weight-two arithmetic cohomology, Invent. Math. 88 (1987), no. 1, 183–215. MR 877012, DOI https://doi.org/10.1007/BF01405097
  • S. Lichtenbaum, New results on weight-two motivic cohomology, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 35–55. MR 1106910, DOI https://doi.org/10.1007/978-0-8176-4576-2_2
  • Roger Marlin, Anneaux de Chow des groupes algébriques ${\rm SU}(n)$, ${\rm Sp}(n)$, ${\rm SO}(n)$, ${\rm Spin}(n)$, $G_{2}$, $F_{4}$; torsion, C. R. Acad. Sci. Paris Sér. A 279 (1974), 119–122 (French). MR 347820
  • A. S. Merkur′ev, On the norm residue symbol of degree $2$, Dokl. Akad. Nauk SSSR 261 (1981), no. 3, 542–547 (Russian). MR 638926
  • A. S. Merkur′ev, The group $H^1(X,\scr K_2)$ for projective homogeneous varieties, Algebra i Analiz 7 (1995), no. 3, 136–164 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 7 (1996), no. 3, 421–444. MR 1353493
  • A. S. Merkurjev, Comparison of equivariant and ordinary $K$-theory of algebraic varieties, to appear in St.-Petersburg Math. J.
  • A. S. Merkur′ev and A. A. Suslin, $K$-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011–1046, 1135–1136 (Russian). MR 675529
  • A. S. Merkur′ev and A. A. Suslin, Norm residue homomorphism of degree three, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 2, 339–356 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 2, 349–367. MR 1062517
  • A. S. Merkur′ev and A. A. Suslin, The group $K_3$ for a field, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 3, 522–545 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 3, 541–565. MR 1072694
  • John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. MR 0440554
  • I. A. Panin, Application of $K$-theory in algebraic geometry, doctoral dissertation, LOMI, Leningrad, 1984.
  • I. A. Panin, A splitting principle, Preprint, Bielefeld University, 1994.
  • R. Parimala and V. Srinivas, Analogues of the Brauer group for algebras with involution, Duke Math. J. 66 (1992), no. 2, 207–237. MR 1162189, DOI https://doi.org/10.1215/S0012-7094-92-06606-3
  • Emmanuel Peyre, Corps de fonctions de variétés homogènes et cohomologie galoisienne, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 7, 891–896 (French, with English and French summaries). MR 1355848
  • Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
  • Peter Roquette, On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras, Math. Ann. 150 (1963), 411–439. MR 154888, DOI https://doi.org/10.1007/BF01357435
  • M. Rost, Hilbert’s theorem 90 for $K_3^M$ for degree-two extensions, preprint, Regensburg, 1986.
  • M. Rost, Chow groups with coefficients, Documenta Math. 1 (1996), 319–393.
  • M. Rost, Cohomological invariants, in preparation.
  • Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063
  • Jean-Pierre Serre, Cohomologie galoisienne: progrès et problèmes, Astérisque 227 (1995), Exp. No. 783, 4, 229–257 (French, with French summary). Séminaire Bourbaki, Vol. 1993/94. MR 1321649
  • C. S. Seshadri, Line bundles on Schubert varieties, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 499–528. MR 893610
  • A. A. Suslin, $K$-theory and $K$-cohomology of certain group varieties, Algebraic $K$-theory, Adv. Soviet Math., vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 53–74. MR 1124626
  • A. A. Suslin, Torsion in $K_2$ of fields, $K$-Theory 1 (1987), no. 1, 5–29. MR 899915, DOI https://doi.org/10.1007/BF00533985
  • M. Shyevski, The fifth invariant of quadratic forms, Algebra i Analiz 2 (1990), no. 1, 213–234 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 1, 179–198. MR 1049911
  • J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, 1966, pp. 33–62. MR 0224710

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 11E81, 55R40

Retrieve articles in all journals with MSC (1991): 11E81, 55R40


Additional Information

Hélène Esnault
Affiliation: FB6, Mathematik, Universität Essen, D-45117 Essen, Germany
MR Author ID: 64210
Email: esnault@uni-essen.de

Bruno Kahn
Affiliation: Institut de Mathématiques de Jussieu, Université Paris 7, Case 7012, 75251 Paris Cedex 05, France
Email: kahn@math.jussieu.fr

Marc Levine
Affiliation: Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
MR Author ID: 113315
Email: marc@neu.edu

Eckart Viehweg
Affiliation: FB6, Mathematik, Universität Essen, D-45117 Essen, Germany
Email: viehweg@uni-essen.de

Received by editor(s): September 13, 1996
Received by editor(s) in revised form: July 28, 1997
Additional Notes: This research was partially supported by the DFG Forschergruppe “Arithmetik und Geometrie”; the second and third author gratefully acknowledge its hospitality.
Article copyright: © Copyright 1998 American Mathematical Society