$C^*$ tensor categories from quantum groups
HTML articles powered by AMS MathViewer
- by Hans Wenzl
- J. Amer. Math. Soc. 11 (1998), 261-282
- DOI: https://doi.org/10.1090/S0894-0347-98-00253-7
- PDF | Request permission
Abstract:
Let $\mathfrak g$ be a semisimple Lie algebra and let $d$ be the ratio between the square of the lengths of a long and a short root. Moreover, let $\mathcal F$ be the quotient category of the category of tilting modules of $U_q\mathfrak g$ modulo the ideal of tilting modules with zero $q$-dimension for $q=e^{\pm \pi i/dl}$. We show that for $l$ a sufficiently large integer, the morphisms of $\mathcal F$ are Hilbert spaces satisfying functorial properties. As an application, we obtain a subfactor of the hyperfinite II$_1$ factor for each object of $\mathcal F$.References
- Henning Haahr Andersen, Tensor products of quantized tilting modules, Comm. Math. Phys. 149 (1992), no. 1, 149–159. MR 1182414, DOI 10.1007/BF02096627
- Henning Haahr Andersen and Jan Paradowski, Fusion categories arising from semisimple Lie algebras, Comm. Math. Phys. 169 (1995), no. 3, 563–588. MR 1328736, DOI 10.1007/BF02099312
- V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- V. G. Drinfel′d, Almost cocommutative Hopf algebras, Algebra i Analiz 1 (1989), no. 2, 30–46 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 2, 321–342. MR 1025154
- David E. Evans and Yasuyuki Kawahigashi, Orbifold subfactors from Hecke algebras, Comm. Math. Phys. 165 (1994), no. 3, 445–484. MR 1301620, DOI 10.1007/BF02099420
- Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR 999799, DOI 10.1007/978-1-4613-9641-3
- Frederick M. Goodman and Hans Wenzl, Littlewood-Richardson coefficients for Hecke algebras at roots of unity, Adv. Math. 82 (1990), no. 2, 244–265. MR 1063959, DOI 10.1016/0001-8708(90)90090-A
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
- André Joyal and Ross Street, The geometry of tensor calculus. I, Adv. Math. 88 (1991), no. 1, 55–112. MR 1113284, DOI 10.1016/0001-8708(91)90003-P
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145, DOI 10.1007/978-1-4612-0783-2
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no. 4, 905–947, 949–1011. MR 1186962, DOI 10.1090/S0894-0347-1993-99999-X
- Alexander A. Kirillov Jr., On an inner product in modular tensor categories, J. Amer. Math. Soc. 9 (1996), no. 4, 1135–1169. MR 1358983, DOI 10.1090/S0894-0347-96-00210-X
- A. N. Kirillov and N. Reshetikhin, $q$-Weyl group and a multiplicative formula for universal $R$-matrices, Comm. Math. Phys. 134 (1990), no. 2, 421–431. MR 1081014, DOI 10.1007/BF02097710
- S. Z. Levendorskiĭ and Ya. S. Soĭbel′man, Some applications of the quantum Weyl groups, J. Geom. Phys. 7 (1990), no. 2, 241–254. MR 1120927, DOI 10.1016/0393-0440(90)90013-S
- R. Longo, J.E. Roberts, A theory of dimension, $K$-Theory, (to appear).
- Peter Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), no. 3, 499–525. MR 1356780, DOI 10.2307/2118553
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites. MR 1064110, DOI 10.1007/978-3-642-74334-4
- M. Pimsner, A class of Markov traces, preprint.
- Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57–106. MR 860811, DOI 10.24033/asens.1504
- S. Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math. 101 (1990), no. 1, 19–43. MR 1055708, DOI 10.1007/BF01231494
- Sorin Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), no. 3, 427–445. MR 1334479, DOI 10.1007/BF01241137
- V. Turaev and H. Wenzl, Quantum invariants of $3$-manifolds associated with classical simple Lie algebras, Internat. J. Math. 4 (1993), no. 2, 323–358. MR 1217386, DOI 10.1142/S0129167X93000170
- V. G. Turaev, H. Wenzl, Semisimple and modular tensor categories from link invariants, Math. Annalen 309 (1997), 411-461.
- V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. MR 1292673, DOI 10.1515/9783110883275
- Erik Verlinde, Fusion rules and modular transformations in $2$D conformal field theory, Nuclear Phys. B 300 (1988), no. 3, 360–376. MR 954762, DOI 10.1016/0550-3213(88)90603-7
- Antony Wassermann, Coactions and Yang-Baxter equations for ergodic actions and subfactors, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 203–236. MR 996457
- Antony J. Wassermann, Operator algebras and conformal field theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 966–979. MR 1403996
- A. Wassermann, Operator algebras and conformal field theory III (to appear).
- Hans Wenzl, Hecke algebras of type $A_n$ and subfactors, Invent. Math. 92 (1988), no. 2, 349–383. MR 936086, DOI 10.1007/BF01404457
- Hans Wenzl, Quantum groups and subfactors of type $B$, $C$, and $D$, Comm. Math. Phys. 133 (1990), no. 2, 383–432. MR 1090432, DOI 10.1007/BF02097374
- F. Xu, Standard $\lambda$-lattices from quantum groups, preprint.
Bibliographic Information
- Hans Wenzl
- Affiliation: Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0112
- MR Author ID: 239252
- Email: wenzl@brauer.ucsd.edu
- Received by editor(s): February 7, 1997
- Received by editor(s) in revised form: September 29, 1997
- Additional Notes: The author was supported in part by NSF grant # DMS 94-00987
- © Copyright 1998 American Mathematical Society
- Journal: J. Amer. Math. Soc. 11 (1998), 261-282
- MSC (1991): Primary 81R50, 46L37
- DOI: https://doi.org/10.1090/S0894-0347-98-00253-7
- MathSciNet review: 1470857