Polish group actions: Dichotomies and generalized elementary embeddings
HTML articles powered by AMS MathViewer
- by Howard Becker
- J. Amer. Math. Soc. 11 (1998), 397-449
- DOI: https://doi.org/10.1090/S0894-0347-98-00258-6
- PDF | Request permission
Abstract:
We prove that any Polish group which admits a complete left-invariant metric satisfies the Topological Vaught Conjecture. We also generalize some theorems of model theory from the logic actions to other Polish group actions.References
- Jon Barwise, Admissible sets and structures, Perspectives in Mathematical Logic, Springer-Verlag, Berlin-New York, 1975. An approach to definability theory. MR 0424560, DOI 10.1007/978-3-662-11035-5
- Howard Becker, The topological Vaught’s conjecture and minimal counterexamples, J. Symbolic Logic 59 (1994), no. 3, 757–784. MR 1295968, DOI 10.2307/2275907
- —, The number of path-components of a compact subset of $\mathbb {R}^{n}$, Logic Colloquium 95 (J. A. Makowsky and E. V. Ravve, eds.), Lecture Notes in Logic, vol. 11, Springer-Verlag, to appear.
- —, Polish group actions and generalized model theory, in preparation.
- H. Becker and R. Dougherty, On disjoint Borel uniformizations, Advances in Mathematics, to appear.
- H. Becker and A.S. Kechris, The Descriptive Set Theory of Polish Group Actions, Cambridge University Press, 1996.
- Elisabeth Bouscaren, Martin’s conjecture for $\omega$-stable theories, Israel J. Math. 49 (1984), no. 1-3, 15–25. MR 788262, DOI 10.1007/BF02760643
- John P. Burgess, Equivalences generated by families of Borel sets, Proc. Amer. Math. Soc. 69 (1978), no. 2, 323–326. MR 476524, DOI 10.1090/S0002-9939-1978-0476524-6
- John P. Burgess, Effective enumeration of classes in a $\Sigma ^{1}_{1}$ equivalence relation, Indiana Univ. Math. J. 28 (1979), no. 3, 353–364. MR 529670, DOI 10.1512/iumj.1979.28.28024
- J. Dixmier, Dual et quasi-dual d’une algèbre de Banach involutive, Trans. Amer. Math. Soc. 104 (1962), 278–283 (French). MR 139960, DOI 10.1090/S0002-9947-1962-0139960-6
- Edward G. Effros, Transformation groups and $C^{\ast }$-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, DOI 10.2307/1970381
- Edward G. Effros, Polish transformation groups and classification problems, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 217–227. MR 619045
- Harvey Friedman, Countable models of set theories, Cambridge Summer School in Mathematical Logic (Cambridge, 1971) Lecture Notes in Math., Vol. 337, Springer, Berlin, 1973, pp. 539–573. MR 0347599
- Harvey Friedman and Lee Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989), no. 3, 894–914. MR 1011177, DOI 10.2307/2274750
- S. Gao, On automorphism groups of countable structures, Journal of Symbolic Logic, to appear.
- James Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124–138. MR 136681, DOI 10.1090/S0002-9947-1961-0136681-X
- Leo Harrington, Analytic determinacy and $0^{\sharp }$, J. Symbolic Logic 43 (1978), no. 4, 685–693. MR 518675, DOI 10.2307/2273508
- L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903–928. MR 1057041, DOI 10.1090/S0894-0347-1990-1057041-5
- L. Harrington and R. Sami, Equivalence relations, projective and beyond, Logic Colloquium ’78 (Mons, 1978) Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam-New York, 1979, pp. 247–264. MR 567673
- Leo Harrington and Saharon Shelah, Counting equivalence classes for co-$\kappa$-Souslin equivalence relations, Logic Colloquium ’80 (Prague, 1980) Studies in Logic and the Foundations of Mathematics, vol. 108, North-Holland, Amsterdam-New York, 1982, pp. 147–152. MR 673790
- G. Hjorth, Orbit cardinals: On the definable cardinalities of quotient spaces of the form $X/G$, where $G$ acts on a Polish space $X$, preprint.
- G. Hjorth and S. Solecki, Vaught’s conjecture and the Glimm-Effros property for Polish transformation groups, Transactions of the American Mathematical Society, to appear.
- Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741, DOI 10.1017/CBO9780511551574
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Akihiro Kanamori, The higher infinite, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1994. Large cardinals in set theory from their beginnings. MR 1321144
- Alexander S. Kechris, The structure of Borel equivalence relations in Polish spaces, Set theory of the continuum (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 26, Springer, New York, 1992, pp. 89–102. MR 1233813, DOI 10.1007/978-1-4613-9754-0_{7}
- Alexander S. Kechris, Topology and descriptive set theory, Topology Appl. 58 (1994), no. 3, 195–222. MR 1288299, DOI 10.1016/0166-8641(94)00146-4
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Alexander S. Kechris and Alain Louveau, The classification of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), no. 1, 215–242. MR 1396895, DOI 10.1090/S0894-0347-97-00221-X
- H. Jerome Keisler, Model theory for infinitary logic. Logic with countable conjunctions and finite quantifiers, Studies in Logic and the Foundations of Mathematics, Vol. 62, North-Holland Publishing Co., Amsterdam-London, 1971. MR 0344115
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
- D.A. Martin and A.S. Kechris, Infinite games and effective descriptive set theory, Analytic Sets (C.A. Rogers et al., eds.), Academic Press (1980), 404–470.
- Douglas E. Miller, The invariant $\Pi ^{0}_{\alpha }$ separation principle, Trans. Amer. Math. Soc. 242 (1978), 185–204. MR 496802, DOI 10.1090/S0002-9947-1978-0496802-9
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Anne C. Morel, Structure and order structure in Abelian groups, Colloq. Math. 19 (1968), 199–209. MR 232843, DOI 10.4064/cm-19-2-199-209
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- Joseph J. Rotman, The theory of groups. An introduction, Allyn and Bacon, Inc., Boston, Mass., 1965. MR 0204499
- Ramez L. Sami, Polish group actions and the Vaught conjecture, Trans. Amer. Math. Soc. 341 (1994), no. 1, 335–353. MR 1022169, DOI 10.1090/S0002-9947-1994-1022169-2
- Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), no. 1, 1–28. MR 568914, DOI 10.1016/0003-4843(80)90002-9
- Sławomir Solecki, Equivalence relations induced by actions of Polish groups, Trans. Amer. Math. Soc. 347 (1995), no. 12, 4765–4777. MR 1311918, DOI 10.1090/S0002-9947-1995-1311918-2
- John R. Steel, Forcing with tagged trees, Ann. Math. Logic 15 (1978), no. 1, 55–74. MR 511943, DOI 10.1016/0003-4843(78)90026-8
- John R. Steel, On Vaught’s conjecture, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77) Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp. 193–208. MR 526920
- Jacques Stern, On Lusin’s restricted continuum problem, Ann. of Math. (2) 120 (1984), no. 1, 7–37. MR 750715, DOI 10.2307/2007070
- Y. Suzuki, Orbits of denumerable models of complete theories, Fund. Math. 67 (1970), 89–95. MR 266748, DOI 10.4064/fm-67-1-89-95
- R. L. Vaught, Denumerable models of complete theories, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw, 1961, pp. 303–321. MR 0186552
- C. M. Wagner, On Martin’s conjecture, Ann. Math. Logic 22 (1982), no. 1, 47–67. MR 661477, DOI 10.1016/0003-4843(82)90015-8
Bibliographic Information
- Howard Becker
- Affiliation: Department of Mathematics, The University of South Carolina, Columbia, South Carolina 29208
- MR Author ID: 33335
- Email: becker@math.sc.edu
- Received by editor(s): April 14, 1997
- Received by editor(s) in revised form: November 7, 1997
- Additional Notes: The author’s research was partially supported by NSF Grant DMS-9505505.
- © Copyright 1998 American Mathematical Society
- Journal: J. Amer. Math. Soc. 11 (1998), 397-449
- MSC (1991): Primary 03E15, 22A05, 54H15; Secondary 03C15, 28D15
- DOI: https://doi.org/10.1090/S0894-0347-98-00258-6
- MathSciNet review: 1478843