L-series with nonzero central critical value
HTML articles powered by AMS MathViewer
- by Kevin James
- J. Amer. Math. Soc. 11 (1998), 635-641
- DOI: https://doi.org/10.1090/S0894-0347-98-00263-X
- PDF | Request permission
Abstract:
Given a cusp form $f$ of even integral weight and its associated $L$-function $L(f,s)$, we expect that a positive proportion of the quadratic twists of $L$ will have nonzero central critical value. In this paper we give examples of weight two newforms whose associated $L$-functions have the property that a positive proportion of its quadratic twists have nonzero central critical value.References
- A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma _{0}(m)$, Math. Ann. 185 (1970), 134–160. MR 268123, DOI 10.1007/BF01359701
- Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic $L$-functions and their derivatives, Ann. of Math. (2) 131 (1990), no. 1, 53–127. MR 1038358, DOI 10.2307/1971508
- Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, Nonvanishing theorems for $L$-functions of modular forms and their derivatives, Invent. Math. 102 (1990), no. 3, 543–618. MR 1074487, DOI 10.1007/BF01233440
- H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields. II, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1551, 405–420. MR 491593, DOI 10.1098/rspa.1971.0075
- G. Frey, On the Selmer group of twists of elliptic curves with $\textbf {Q}$-rational torsion points, Canad. J. Math. 40 (1988), no. 3, 649–665. MR 960600, DOI 10.4153/CJM-1988-028-9
- Solomon Friedberg and Jeffrey Hoffstein, Nonvanishing theorems for automorphic $L$-functions on $\textrm {GL}(2)$, Ann. of Math. (2) 142 (1995), no. 2, 385–423. MR 1343325, DOI 10.2307/2118638
- Dorian Goldfeld, Conjectures on elliptic curves over quadratic fields, Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979) Lecture Notes in Math., vol. 751, Springer, Berlin, 1979, pp. 108–118. MR 564926
- D. R. Heath-Brown, The size of Selmer groups for the congruent number problem, Invent. Math. 111 (1993), no. 1, 171–195. MR 1193603, DOI 10.1007/BF01231285
- D. R. Heath-Brown, The size of Selmer groups for the congruent number problem. II, Invent. Math. 118 (1994), no. 2, 331–370. With an appendix by P. Monsky. MR 1292115, DOI 10.1007/BF01231536
- Henryk Iwaniec, On the order of vanishing of modular $L$-functions at the critical point, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 2, 365–376. MR 1081731, DOI 10.5802/jtnb.33
- K. James, An example of an elliptic curve with a positive density of prime quadratic twists which have rank zero, Proceedings of Topics in Number Theory (G. Andrews and K. Ono, eds.), Kluwer, to appear.
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- V. A. Kolyvagin, Finiteness of $E(\textbf {Q})$ and SH$(E,\textbf {Q})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 3, 523–541. MR 954295, DOI 10.1070/IM1989v032n03ABEH000779
- J. Larry Lehman, Levels of positive definite ternary quadratic forms, Math. Comp. 58 (1992), no. 197, 399–417, S17–S22. MR 1106974, DOI 10.1090/S0025-5718-1992-1106974-1
- Wen Ch’ing Winnie Li, Newforms and functional equations, Math. Ann. 212 (1975), 285–315. MR 369263, DOI 10.1007/BF01344466
- Daniel B. Lieman, Nonvanishing of $L$-series associated to cubic twists of elliptic curves, Ann. of Math. (2) 140 (1994), no. 1, 81–108. MR 1289492, DOI 10.2307/2118541
- M. Ram Murty and V. Kumar Murty, Mean values of derivatives of modular $L$-series, Ann. of Math. (2) 133 (1991), no. 3, 447–475. MR 1109350, DOI 10.2307/2944316
- Jin Nakagawa and Kuniaki Horie, Elliptic curves with no rational points, Proc. Amer. Math. Soc. 104 (1988), no. 1, 20–24. MR 958035, DOI 10.1090/S0002-9939-1988-0958035-0
- Ken Ono, Rank zero quadratic twists of modular elliptic curves, Compositio Math. 104 (1996), no. 3, 293–304. MR 1424558
- —, Twists of elliptic curves, Compositio Math. 106 (1997), 349–360.
- K. Ono and C. Skinner, Fourier coefficients of half-integral weight modular forms modulo $\ell$, Ann. of Math. (to appear).
- —, Non-vanishing of quadratic twists of modular $L$-functions, Invent. Math. (to appear).
- B. Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann. 116 (1939).
- Goro Shimura, On modular forms of half integral weight, Ann. of Math. (2) 97 (1973), 440–481. MR 332663, DOI 10.2307/1970831
- Carl Ludwig Siegel, Gesammelte Abhandlungen. Bände I, II, III, Springer-Verlag, Berlin-New York, 1966 (German). Herausgegeben von K. Chandrasekharan und H. Maass. MR 0197270
- J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, 375–484 (French). MR 646366
- S. Wong, Rank zero twists of elliptic curves, preprint.
- Gang Yu, Quadratic twists of a given elliptic curve over ${\mathbb {Q}}$, preprint.
Bibliographic Information
- Kevin James
- Affiliation: Department of Mathematics, Pennsylvania State University, 218 McAllister Building, University Park, Pennsylvania 16802-6401
- MR Author ID: 629241
- Email: klj@math.psu.edu
- Received by editor(s): August 13, 1997
- Received by editor(s) in revised form: January 20, 1998
- © Copyright 1998 American Mathematical Society
- Journal: J. Amer. Math. Soc. 11 (1998), 635-641
- MSC (1991): Primary 11G40
- DOI: https://doi.org/10.1090/S0894-0347-98-00263-X
- MathSciNet review: 1492854