## A topological characterisation of hyperbolic groups

HTML articles powered by AMS MathViewer

- by Brian H. Bowditch
- J. Amer. Math. Soc.
**11**(1998), 643-667 - DOI: https://doi.org/10.1090/S0894-0347-98-00264-1
- PDF | Request permission

## Abstract:

We characterise word hyperbolic groups as those groups which act properly discontinuously and cocompactly on the space of distinct triples of a compact metrisable space. This is, in turn, equivalent to a convergence group for which every point of the space is a conical limit point.## References

- Alan F. Beardon and Bernard Maskit,
*Limit points of Kleinian groups and finite sided fundamental polyhedra*, Acta Math.**132**(1974), 1–12. MR**333164**, DOI 10.1007/BF02392106 - B. H. Bowditch,
*Notes on Gromov’s hyperbolicity criterion for path-metric spaces*, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 64–167. MR**1170364** - B. H. Bowditch,
*Geometrical finiteness with variable negative curvature*, Duke Math. J.**77**(1995), no. 1, 229–274. MR**1317633**, DOI 10.1215/S0012-7094-95-07709-6 - B.H.Bowditch,
*Cut points and canonical splittings of hyperbolic groups*, to appear in Acta. Math. - B.H.Bowditch,
*Convergence groups and configuration spaces*, to appear in “Group Theory Down Under” (ed. J.Cossey, C.F.Miller, W.D.Neumann, M.Shapiro), de Gruyter. - B.H.Bowditch,
*Relatively hyperbolic groups*, preprint, Southampton (1997). - J.W.Cannon, E.L.Swenson,
*Recognizing constant curvature discrete groups in dimension*3, to appear in Trans. Amer. Math. Soc. - Andrew Casson and Douglas Jungreis,
*Convergence groups and Seifert fibered $3$-manifolds*, Invent. Math.**118**(1994), no. 3, 441–456. MR**1296353**, DOI 10.1007/BF01231540 - M. J. Dunwoody,
*The accessibility of finitely presented groups*, Invent. Math.**81**(1985), no. 3, 449–457. MR**807066**, DOI 10.1007/BF01388581 - Eric M. Freden,
*Negatively curved groups have the convergence property. I*, Ann. Acad. Sci. Fenn. Ser. A I Math.**20**(1995), no. 2, 333–348. MR**1346817** - David Gabai,
*Convergence groups are Fuchsian groups*, Ann. of Math. (2)**136**(1992), no. 3, 447–510. MR**1189862**, DOI 10.2307/2946597 - F. W. Gehring and G. J. Martin,
*Discrete quasiconformal groups. I*, Proc. London Math. Soc. (3)**55**(1987), no. 2, 331–358. MR**896224**, DOI 10.1093/plms/s3-55_{2}.331 - F.W.Gehring, G.J.Martin,
*Discrete quasiconformal groups*II, handwritten notes. - É. Ghys and P. de la Harpe (eds.),
*Sur les groupes hyperboliques d’après Mikhael Gromov*, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR**1086648**, DOI 10.1007/978-1-4684-9167-8 - M. Gromov,
*Hyperbolic groups*, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR**919829**, DOI 10.1007/978-1-4613-9586-7_{3} - J.Heinonen, P.Koskela,
*Quasiconformal maps in metric spaces with controlled geometry*, to appear in Acta. Math. - R.Kirby (ed.),
*Problems in low-dimensional topology*, problem list, Berkeley (1995). - Gaven J. Martin and Pekka Tukia,
*Convergence groups with an invariant component pair*, Amer. J. Math.**114**(1992), no. 5, 1049–1077. MR**1183531**, DOI 10.2307/2374889 - Jean-Pierre Otal,
*Sur la géometrie symplectique de l’espace des géodésiques d’une variété à courbure négative*, Rev. Mat. Iberoamericana**8**(1992), no. 3, 441–456 (French). MR**1202417**, DOI 10.4171/RMI/130 - Frédéric Paulin,
*Un groupe hyperbolique est déterminé par son bord*, J. London Math. Soc. (2)**54**(1996), no. 1, 50–74 (French, with French summary). MR**1395067**, DOI 10.1112/jlms/54.1.50 - Pekka Tukia,
*Homeomorphic conjugates of Fuchsian groups*, J. Reine Angew. Math.**391**(1988), 1–54. MR**961162**, DOI 10.1515/crll.1988.391.1 - Pekka Tukia,
*Convergence groups and Gromov’s metric hyperbolic spaces*, New Zealand J. Math.**23**(1994), no. 2, 157–187. MR**1313451** - P.Tukia,
*Conical limit points and uniform convergence groups*, preprint, Helsinki (1996).

## Bibliographic Information

**Brian H. Bowditch**- Affiliation: Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton SO17 1BJ, Great Britain
- Email: bhb@maths.soton.ac.uk
- Received by editor(s): March 20, 1997
- Received by editor(s) in revised form: February 2, 1998
- © Copyright 1998 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**11**(1998), 643-667 - MSC (1991): Primary 20F32
- DOI: https://doi.org/10.1090/S0894-0347-98-00264-1
- MathSciNet review: 1602069