Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras
HTML articles powered by AMS MathViewer
- by Peter Littelmann
- J. Amer. Math. Soc. 11 (1998), 551-567
- DOI: https://doi.org/10.1090/S0894-0347-98-00268-9
- PDF | Request permission
Abstract:
The aim of this article is to attach to the set of L-S paths of type $\lambda$ in a canonical way a basis of the corresponding representation $V(\lambda )$. This basis has some nice algebraic-geometric properties. For example, it is compatible with restrictions to Schubert varieties and has the “standard monomial property”. As a consequence we get new simple proofs of the normality of Schubert varieties, the surjectivity of the multiplication map or the restriction map for sections of a line bundle on Schubert varieties. Other applications to the defining ideal of Schubert varieties and associated Groebner basis will be discussed in a forthcoming paper.References
- Raika Dehy, Résultats combinatoires sur les modules de Demazure, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 9, 977–980 (French, with English and French summaries). MR 1451236, DOI 10.1016/S0764-4442(97)87871-8
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697, DOI 10.24033/asens.1261
- N. Gonciulea and V. Lakshmibai, Degenerations of flag and Schubert varieties to toric varieties, Transform. Groups 1 (1996), no. 3, 215–248. MR 1417711, DOI 10.1007/BF02549207
- Masaki Kashiwara, Similarity of crystal bases, Lie algebras and their representations (Seoul, 1995) Contemp. Math., vol. 194, Amer. Math. Soc., Providence, RI, 1996, pp. 177–186. MR 1395599, DOI 10.1090/conm/194/02393
- Masaki Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383–413. MR 1262212, DOI 10.1215/S0012-7094-94-07317-1
- Shrawan Kumar, Demazure character formula in arbitrary Kac-Moody setting, Invent. Math. 89 (1987), no. 2, 395–423. MR 894387, DOI 10.1007/BF01389086
- V. Lakshmibai, Tangent spaces to Schubert varieties, Math. Res. Lett. 2 (1995), no. 4, 473–477. MR 1355708, DOI 10.4310/MRL.1995.v2.n4.a7
- V. Lakshmibai, Bases for quantum Demazure modules. II, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 149–168. MR 1278733, DOI 10.1090/pspum/056.2/1278733
- V. Lakshmibai and C. S. Seshadri, Geometry of $G/P$. V, J. Algebra 100 (1986), no. 2, 462–557. MR 840589, DOI 10.1016/0021-8693(86)90089-X
- V. Lakshmibai and C. S. Seshadri, Standard monomial theory, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) Manoj Prakashan, Madras, 1991, pp. 279–322. MR 1131317
- Peter Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), no. 1-3, 329–346. MR 1253196, DOI 10.1007/BF01231564
- Peter Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), no. 3, 499–525. MR 1356780, DOI 10.2307/2118553
- Peter Littelmann, A plactic algebra for semisimple Lie algebras, Adv. Math. 124 (1996), no. 2, 312–331. MR 1424313, DOI 10.1006/aima.1996.0085
- Peter Littelmann, Good filtrations and decomposition rules for representations with standard monomial theory, J. Reine Angew. Math. 433 (1992), 161–180. MR 1191604, DOI 10.1515/crll.1992.433.161
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Olivier Mathieu, Construction d’un groupe de Kac-Moody et applications, Compositio Math. 69 (1989), no. 1, 37–60 (French). MR 986812
- V. B. Mehta and A. Ramanathan, Schubert varieties in $G/B\times G/B$, Compositio Math. 67 (1988), no. 3, 355–358. MR 959217
- A. Ramanathan, Equations defining Schubert varieties and Frobenius splitting of diagonals, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 61–90. MR 908216, DOI 10.1007/BF02698935
- S. Ramanan and A. Ramanathan, Projective normality of flag varieties and Schubert varieties, Invent. Math. 79 (1985), no. 2, 217–224. MR 778124, DOI 10.1007/BF01388970
- K. N. Raghavan, P. Sankaran, Monomial bases for representations of classical semisimple Lie algebras, J. Trans. Groups (to appear).
Bibliographic Information
- Peter Littelmann
- Affiliation: Université Louis Pasteur et Institut Universitaire de France, Institut de Recherche Mathématique Avancée 7, rue René Descartes, F-67084 Strasbourg Cedex, France
- Email: littelma@math.u-strasbg.fr
- Received by editor(s): July 17, 1997
- © Copyright 1998 American Mathematical Society
- Journal: J. Amer. Math. Soc. 11 (1998), 551-567
- MSC (1991): Primary 17B10, 17B67, 20G05, 14M15
- DOI: https://doi.org/10.1090/S0894-0347-98-00268-9
- MathSciNet review: 1603862