## Decomposing Borel sets and functions and the structure of Baire class 1 functions

HTML articles powered by AMS MathViewer

- by Sławomir Solecki
- J. Amer. Math. Soc.
**11**(1998), 521-550 - DOI: https://doi.org/10.1090/S0894-0347-98-00269-0
- PDF | Request permission

## Abstract:

We establish dichotomy results concerning the structure of Baire class 1 functions. We consider decompositions of Baire class 1 functions into continuous functions and into continuous functions with closed domains. Dichotomy results for both of them are proved: a Baire class 1 function decomposes into countably many countinuous functions, or else contains a function which turns out to be as complicated with respect to the decomposition as any other Baire class 1 function; similarly for decompositions into continuous functions with closed domains. These results strengthen a theorem of Jayne and Rogers and answer some questions of Steprāns. Their proofs use effective descriptive set theory as well as infinite Borel games on the integers. An important role in the proofs is played by what we call, in analogy with being Wadge complete, complete semicontinuous functions. As another application of our study of complete semicontinuous functions, we generalize some recent theorems of Jackson and Mauldin, and van Mill and Pol concerning measures viewed as examples of complicated semicontinuous functions. We also prove that a Borel set $A$ is either $\boldsymbol \Sigma ^{0}_{\alpha }$ or there is a continuous injection $\phi :\; \omega ^{\omega }\to A$ such that for any $\boldsymbol \Sigma ^{0}_{\alpha }$ set $B\subset A$, $\phi ^{-1}(B)$ is meager. We show analogous results for Borel functions. These theorems give a new proof of a result of Stern, strengthen some results of Laczkovich, and improve the estimates for cardinal coefficients studied by Cichoń, Morayne, Pawlikowski, and the author.## References

- P. S. Novikov and S. I. Adyan,
*On a semicontinuous function*, Moskov. Gos. Ped. Inst. Uč. Zap.**138**(1958), 3–10 (Russian). MR**0120326** - H. Becker and R. Dougherty,
*On disjoint Borel uniformizations*, Adv. Math. (to appear). - J. Cichoń and M. Morayne,
*Universal functions and generalized classes of functions*, Proc. Amer. Math. Soc.**102**(1988), no. 1, 83–89. MR**915721**, DOI 10.1090/S0002-9939-1988-0915721-6 - J. Cichoń, M. Morayne, J. Pawlikowski, and S. Solecki,
*Decomposing Baire functions*, J. Symbolic Logic**56**(1991), no. 4, 1273–1283. MR**1136456**, DOI 10.2307/2275474 - Ryszard Engelking,
*Teoria wymiaru*, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR**0482696** - L. A. Harrington, A. S. Kechris, and A. Louveau,
*A Glimm-Effros dichotomy for Borel equivalence relations*, J. Amer. Math. Soc.**3**(1990), no. 4, 903–928. MR**1057041**, DOI 10.1090/S0894-0347-1990-1057041-5 - R. Haydon, E. Odell, and H. Rosenthal,
*On certain classes of Baire-$1$ functions with applications to Banach space theory*, Functional analysis (Austin, TX, 1987/1989) Lecture Notes in Math., vol. 1470, Springer, Berlin, 1991, pp. 1–35. MR**1126734**, DOI 10.1007/BFb0090209 - Steve Jackson and R. Daniel Mauldin,
*Some complexity results in topology and analysis*, Fund. Math.**141**(1992), no. 1, 75–83. MR**1178370**, DOI 10.4064/fm-141-1-75-83 - J. E. Jayne and C. A. Rogers,
*First level Borel functions and isomorphisms*, J. Math. Pures Appl. (9)**61**(1982), no. 2, 177–205. MR**673304** - L. Keldiš,
*Sur les fonctions premières measurables B*, Dokl. Akad. Nauk. SSSR**4**(1934), 192–197. - A. S. Kechris and A. Louveau,
*A classification of Baire class $1$ functions*, Trans. Amer. Math. Soc.**318**(1990), no. 1, 209–236. MR**946424**, DOI 10.1090/S0002-9947-1990-0946424-3 - Alain Louveau,
*A separation theorem for $\Sigma ^{1}_{1}$ sets*, Trans. Amer. Math. Soc.**260**(1980), no. 2, 363–378. MR**574785**, DOI 10.1090/S0002-9947-1980-0574785-X - A. S. Kechris, D. A. Martin, and Y. N. Moschovakis (eds.),
*Cabal seminar 79–81*, Lecture Notes in Mathematics, vol. 1019, Springer-Verlag, Berlin, 1983. MR**730583**, DOI 10.1007/BFb0071690 *Analytic sets*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. Lectures delivered at a Conference held at University College, University of London, London, July 16–29, 1978. MR**608794**- J. van Mill and R. Pol,
*Baire $1$ functions which are not countable unions of continuous functions*, Acta Math. Hungar.**66**(1995), no. 4, 289–300. MR**1314008**, DOI 10.1007/BF01876046 - MichałMorayne,
*Algebras of Borel measurable functions*, Fund. Math.**141**(1992), no. 3, 229–242. MR**1199236**, DOI 10.4064/fm-141-3-229-242 - Haskell P. Rosenthal,
*Some recent discoveries in the isomorphic theory of Banach spaces*, Bull. Amer. Math. Soc.**84**(1978), no. 5, 803–831. MR**499730**, DOI 10.1090/S0002-9904-1978-14521-2 - Haskell Rosenthal,
*A characterization of Banach spaces containing $c_0$*, J. Amer. Math. Soc.**7**(1994), no. 3, 707–748. MR**1242455**, DOI 10.1090/S0894-0347-1994-1242455-4 - H.P. Rosenthal,
*Differences of bounded semi-continuous functions, I*(to appear). - Sławomir Solecki,
*Covering analytic sets by families of closed sets*, J. Symbolic Logic**59**(1994), no. 3, 1022–1031. MR**1295987**, DOI 10.2307/2275926 - Saharon Shelah and Juris Steprāns,
*Decomposing Baire class $1$ functions into continuous functions*, Fund. Math.**145**(1994), no. 2, 171–180. MR**1297403** - Juris Steprāns,
*A very discontinuous Borel function*, J. Symbolic Logic**58**(1993), no. 4, 1268–1283. MR**1253921**, DOI 10.2307/2275142 - Jacques Stern,
*Évaluation du rang de Borel de certains ensembles*, C. R. Acad. Sci. Paris Sér. A-B**286**(1978), no. 20, A855–A857 (French, with English summary). MR**498855**

## Bibliographic Information

**Sławomir Solecki**- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- Email: ssolecki@indiana.edu
- Received by editor(s): May 1, 1997
- © Copyright 1998 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**11**(1998), 521-550 - MSC (1991): Primary 03A15, 26A21, 28A12
- DOI: https://doi.org/10.1090/S0894-0347-98-00269-0
- MathSciNet review: 1606843