Grothendieck’s theorem on non-abelian $H^2$ and local-global principles
HTML articles powered by AMS MathViewer
- by Yuval Z. Flicker, Claus Scheiderer and R. Sujatha
- J. Amer. Math. Soc. 11 (1998), 731-750
- DOI: https://doi.org/10.1090/S0894-0347-98-00271-9
- PDF | Request permission
Abstract:
A theorem of Grothendieck asserts that over a perfect field $k$ of cohomological dimension one, all non-abelian $H^{2}$-cohomology sets of algebraic groups are trivial. The purpose of this paper is to establish a formally real generalization of this theorem. The generalization — to the context of perfect fields of virtual cohomological dimension one — takes the form of a local-global principle for the $H^{2}$-sets with respect to the orderings of the field. This principle asserts in particular that an element in $H^{2}$ is neutral precisely when it is neutral in the real closure with respect to every ordering in a dense subset of the real spectrum of $k$. Our techniques provide a new proof of Grothendieck’s original theorem. An application to homogeneous spaces over $k$ is also given.References
- E. Bayer-Fluckiger and R. Parimala, Galois cohomology of the classical groups over fields of cohomological dimension $\leq 2$, Invent. Math. 122 (1995), no. 2, 195–229. MR 1358975, DOI 10.1007/BF01231443
- E. Bayer-Fluckiger, R. Parimala, Classical groups and Hasse principles. Ann. Math., to appear.
- A. Borel and J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964), 111–164 (French). MR 181643, DOI 10.1007/BF02566948
- Mikhail V. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72 (1993), no. 1, 217–239. MR 1242885, DOI 10.1215/S0012-7094-93-07209-2
- M. V. Borovoi, Abelian Galois cohomology of reductive groups. Memoirs AMS 626, (1998).
- Lawrence Breen, Tannakian categories, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 337–376. MR 1265536, DOI 10.1090/pspum/055.1/1265536
- Jean-Louis Colliot-Thélène, Groupes linéaires sur les corps de fonctions de courbes réelles, J. Reine Angew. Math. 474 (1996), 139–167 (French). MR 1390694, DOI 10.1515/crll.1996.474.139
- P. Deligne, J. Milne, Appendix to: Tannakian categories. Lect. Notes Math. 900, 220-226 (1982).
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
- Jean-Claude Douai, Cohomologie galoisienne des groupes semi-simples définis sur les corps globaux, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 24, Ai, A1077–A1080. MR 396777
- Gerhard Frey and Moshe Jarden, Approximation theory and the rank of abelian varieties over large algebraic fields, Proc. London Math. Soc. (3) 28 (1974), 112–128. MR 337997, DOI 10.1112/plms/s3-28.1.112
- Jean Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin-New York, 1971 (French). MR 0344253, DOI 10.1007/978-3-662-62103-5
- Dan Haran, Closed subgroups of $G(\textbf {Q})$ with involutions, J. Algebra 129 (1990), no. 2, 393–411. MR 1040945, DOI 10.1016/0021-8693(90)90227-F
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879, DOI 10.1007/978-3-642-62029-4
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063, DOI 10.1007/978-3-642-69971-9
- Claus Scheiderer, Hasse principles and approximation theorems for homogeneous spaces over fields of virtual cohomological dimension one, Invent. Math. 125 (1996), no. 2, 307–365. MR 1395722, DOI 10.1007/s002220050077
- Jean-Pierre Serre, Groupes algébriques et corps de classes, Publications de l’Institut de Mathématique de l’Université de Nancago, VII, Hermann, Paris, 1959 (French). MR 0103191
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
- T. A. Springer, Nonabelian $H^{2}$ in Galois cohomology, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 164–182. MR 0209297
Bibliographic Information
- Yuval Z. Flicker
- Affiliation: Department of Mathematics, The Ohio State University, 231 W. 18th Ave., Columbus, Ohio 43210-1174
- Email: flicker@math.ohio-state.edu
- Claus Scheiderer
- Affiliation: Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
- MR Author ID: 212893
- Email: claus.scheiderer@mathematik.uni-regensburg.de
- R. Sujatha
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400 005, India
- MR Author ID: 293023
- ORCID: 0000-0003-1221-0710
- Email: sujatha@math.tifr.res.in
- Received by editor(s): September 2, 1997
- Received by editor(s) in revised form: March 16, 1998
- © Copyright 1998 American Mathematical Society
- Journal: J. Amer. Math. Soc. 11 (1998), 731-750
- MSC (1991): Primary 14L30, 11R34, 12G05
- DOI: https://doi.org/10.1090/S0894-0347-98-00271-9
- MathSciNet review: 1608617