## Factorization and approximation problems for matrix functions

HTML articles powered by AMS MathViewer

- by V. V. Peller
- J. Amer. Math. Soc.
**11**(1998), 751-770 - DOI: https://doi.org/10.1090/S0894-0347-98-00274-4
- PDF | Request permission

## Abstract:

We study maximizing vectors of Hankel operators with matrix-valued symbols. This study leads to a solution of the so-called recovery problem for unitary-valued functions and to a new approach to Wiener–Hopf factorizations for functions in a function space $X$ satisfying natural conditions. Finally, we improve earlier results of Peller and Young on hereditary properties of the operator of superoptimal approximation by analytic matrix functions.## References

- V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn,
*Infinite Hankel block matrices and related problems of extension*, Izv. Akad. Nauk Armjan. SSR Ser. Mat.**6**(1971), no. 2-3, 87–112 (Russian, with Armenian and English summaries). MR**0298454** - M. S. Budjanu and I. C. Gohberg,
*General theorems on the factorization of matrix-valued functions. I. The fundamental theorem*, Mat. Issled.**3**(1968), no. vyp. 2 (8), 87–103 (Russian). MR**0259609** - M. S. Budjanu and I. C. Gohberg,
*General theorems on the factorization of matrix-valued functions. I. The fundamental theorem*, Mat. Issled.**3**(1968), no. vyp. 2 (8), 87–103 (Russian). MR**0259609** - Kevin F. Clancey and Israel Gohberg,
*Factorization of matrix functions and singular integral operators*, Operator Theory: Advances and Applications, vol. 3, Birkhäuser Verlag, Basel-Boston, Mass., 1981. MR**657762**, DOI 10.1007/978-3-0348-5492-4 - Lennart Carleson and Sigvard Jacobs,
*Best uniform approximation by analytic functions*, Ark. Mat.**10**(1972), 219–229. MR**322410**, DOI 10.1007/BF02384810 - Harry Dym and Israel Gohberg,
*Unitary interpolants, factorization indices and infinite Hankel block matrices*, J. Funct. Anal.**54**(1983), no. 3, 229–289. MR**724524**, DOI 10.1016/0022-1236(83)90001-0 - I. C. Gohberg,
*The factorization problem in normed rings, functions of isometric and symmetric operators, and singular integral equations*, Uspehi Mat. Nauk**19**(1964), no. 1 (115), 71–124 (Russian). MR**0163184** - I. C. Gohberg and M. G. Kreĭn,
*Systems of integral equations on the half-line with kernels depending on the difference of the arguments*, Uspehi Mat. Nauk (N.S.)**13**(1958), no. 2 (80), 3–72 (Russian). MR**0102720** - Tadasi Nakayama,
*On Frobeniusean algebras. I*, Ann. of Math. (2)**40**(1939), 611–633. MR**16**, DOI 10.2307/1968946 - Georgii S. Litvinchuk and Ilia M. Spitkovskii,
*Factorization of measurable matrix functions*, Operator Theory: Advances and Applications, vol. 25, Birkhäuser Verlag, Basel, 1987. Translated from the Russian by Bernd Luderer; With a foreword by Bernd Silbermann. MR**1015716**, DOI 10.1007/978-3-0348-6266-0 - Sam Perlis,
*Maximal orders in rational cyclic algebras of composite degree*, Trans. Amer. Math. Soc.**46**(1939), 82–96. MR**15**, DOI 10.1090/S0002-9947-1939-0000015-X - N. K. Nikol′skiĭ,
*Treatise on the shift operator*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR**827223**, DOI 10.1007/978-3-642-70151-1 - M. Papadimitrakis,
*On best uniform approximation by bounded analytic functions*, Bull. London Math. Soc.**28**(1996), no. 1, 15–18. MR**1356821**, DOI 10.1112/blms/28.1.15 - V. V. Peller,
*Description of Hankel operators of the class ${\mathfrak {S}}_{p}$ for $p>0$, investigation of the rate of rational approximation and other applications*, Mat. Sb. (N.S.)**122(164)**(1983), no. 4, 481–510 (Russian). MR**725454** - Vladimir V. Peller,
*Hankel operators and multivariate stationary processes*, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 357–371. MR**1077396**, DOI 10.1090/pspum/051.1/1077396 - V. V. Peller,
*Hankel operators and continuity properties of best approximation operators*, Algebra i Analiz**2**(1990), no. 1, 163–189 (Russian); English transl., Leningrad Math. J.**2**(1991), no. 1, 139–160. MR**1049909** - Vladimir V. Peller,
*Boundedness properties of the operators of best approximation by analytic and meromorphic functions*, Ark. Mat.**30**(1992), no. 2, 331–343. MR**1289760**, DOI 10.1007/BF02384879 - V. V. Peller,
*Approximation by analytic operator-valued functions*, Harmonic analysis and operator theory (Caracas, 1994) Contemp. Math., vol. 189, Amer. Math. Soc., Providence, RI, 1995, pp. 431–448. MR**1347029**, DOI 10.1090/conm/189/02279 - V. V. Peller and S. V. Khrushchëv,
*Hankel operators, best approximations and stationary Gaussian processes*, Uspekhi Mat. Nauk**37**(1982), no. 1(223), 53–124, 176 (Russian). MR**643765** - V. V. Peller and N. J. Young,
*Superoptimal analytic approximations of matrix functions*, J. Funct. Anal.**120**(1994), no. 2, 300–343. MR**1266312**, DOI 10.1006/jfan.1994.1034 - V.V. Peller and N.J. Young, Construction of superoptimal approximation,
*Math. Control Signals Systems*8 (1995), 118-137. - V. V. Peller and N. J. Young,
*Continuity properties of best analytic approximation*, J. Reine Angew. Math.**483**(1997), 1–22. MR**1431840**, DOI 10.1515/crll.1997.483.1 - Ju. A. Rozanov,
*Statsionarnye sluchaĭ nye protsessy*, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963 (Russian). MR**0159363** - I. B. Simonenko,
*Certain general questions of the theory of the Riemann boundary value problem*, Izv. Akad. Nauk SSSR Ser. Mat.**32**(1968), 1138–1146 (Russian). MR**0235135** - V. A. Tolokonnikov,
*Generalized Douglas algebras*, Algebra i Analiz**3**(1991), no. 2, 231–252 (Russian); English transl., St. Petersburg Math. J.**3**(1992), no. 2, 455–476. MR**1137530** - Serguei Treil,
*On superoptimal approximation by analytic and meromorphic matrix-valued functions*, J. Funct. Anal.**131**(1995), no. 2, 386–414. MR**1345037**, DOI 10.1006/jfan.1995.1094 - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623–627. MR**13**

## Bibliographic Information

**V. V. Peller**- Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506
- MR Author ID: 194673
- Email: peller@math.ksu.edu
- Received by editor(s): June 11, 1997
- Additional Notes: The author is partially supported by NSF grant DMS 9304011.
- © Copyright 1998 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**11**(1998), 751-770 - MSC (1991): Primary 47B35, 30Dxx, 46Exx
- DOI: https://doi.org/10.1090/S0894-0347-98-00274-4
- MathSciNet review: 1618768