Regularity of the free boundary for the porous medium equation
HTML articles powered by AMS MathViewer
- by P. Daskalopoulos and R. Hamilton
- J. Amer. Math. Soc. 11 (1998), 899-965
- DOI: https://doi.org/10.1090/S0894-0347-98-00277-X
- PDF | Request permission
Abstract:
We study the regularity of the free boundary for solutions of the porous medium equation $u_{t}=\Delta u^{m}$, $m >1$, on ${\mathcal {R}}^{2} \times [0,T]$, with initial data $u^{0}=u(x,0)$ nonnegative and compactly supported. We show that, under certain assumptions on the initial data $u^{0}$, the pressure $f=m u^{m-1}$ will be smooth up to the interface $\Gamma = \partial \{ u >0 \}$, when $0<t\leq T$, for some $T >0$. As a consequence, the free-boundary $\Gamma$ is smooth.References
- Sigurd Angenent, Analyticity of the interface of the porous media equation after the waiting time, Proc. Amer. Math. Soc. 102 (1988), no. 2, 329–336. MR 920995, DOI 10.1090/S0002-9939-1988-0920995-1
- D. G. Aronson, Regularity propeties of flows through porous media, SIAM J. Appl. Math. 17 (1969), 461–467. MR 247303, DOI 10.1137/0117045
- D. G. Aronson, Regularity properties of flows through porous media: A counterexample, SIAM J. Appl. Math. 19 (1970), 299–307. MR 265774, DOI 10.1137/0119027
- D. G. Aronson, Regularity properties of flows through porous media: The interface, Arch. Rational Mech. Anal. 37 (1970), 1–10. MR 255996, DOI 10.1007/BF00249496
- D. G. Aronson, L. A. Caffarelli, and Juan Luis Vázquez, Interfaces with a corner point in one-dimensional porous medium flow, Comm. Pure Appl. Math. 38 (1985), no. 4, 375–404. MR 792397, DOI 10.1002/cpa.3160380404
- D. G. Aronson and J. L. Vázquez, Eventual $C^\infty$-regularity and concavity for flows in one-dimensional porous media, Arch. Rational Mech. Anal. 99 (1987), no. 4, 329–348. MR 898714, DOI 10.1007/BF00282050
- Luis A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2) 130 (1989), no. 1, 189–213. MR 1005611, DOI 10.2307/1971480
- Luis A. Caffarelli and Avner Friedman, Regularity of the free boundary for the one-dimensional flow of gas in a porous medium, Amer. J. Math. 101 (1979), no. 6, 1193–1218. MR 548877, DOI 10.2307/2374136
- Luis A. Caffarelli and Avner Friedman, Regularity of the free boundary of a gas flow in an $n$-dimensional porous medium, Indiana Univ. Math. J. 29 (1980), no. 3, 361–391. MR 570687, DOI 10.1512/iumj.1980.29.29027
- L. A. Caffarelli, J. L. Vázquez, and N. I. Wolanski, Lipschitz continuity of solutions and interfaces of the $N$-dimensional porous medium equation, Indiana Univ. Math. J. 36 (1987), no. 2, 373–401. MR 891781, DOI 10.1512/iumj.1987.36.36022
- Luis A. Caffarelli and Noemí I. Wolanski, $C^{1,\alpha }$ regularity of the free boundary for the $N$-dimensional porous media equation, Comm. Pure Appl. Math. 43 (1990), no. 7, 885–902. MR 1072396, DOI 10.1002/cpa.3160430704
- K. Höllig, H.O. Kreiss, $C^{\infty }$ regularity for the porous medium equation, Univ. of Winsconsin Madison, Computer Scienced Dept., Technical report # 600.
- Barry F. Knerr, The porous medium equation in one dimension, Trans. Amer. Math. Soc. 234 (1977), no. 2, 381–415. MR 492856, DOI 10.1090/S0002-9947-1977-0492856-3
- J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math. 20 (1967), 797–872. MR 234118, DOI 10.1002/cpa.3160200410
- M. V. Safonov, The classical solution of the elliptic Bellman equation, Dokl. Akad. Nauk SSSR 278 (1984), no. 4, 810–813 (Russian). MR 765302
- M. V. Safonov, Classical solution of second-order nonlinear elliptic equations, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 6, 1272–1287, 1328 (Russian); English transl., Math. USSR-Izv. 33 (1989), no. 3, 597–612. MR 984219, DOI 10.1070/IM1989v033n03ABEH000858
- Lihe Wang, On the regularity theory of fully nonlinear parabolic equations. I, Comm. Pure Appl. Math. 45 (1992), no. 1, 27–76. MR 1135923, DOI 10.1002/cpa.3160450103
- Lihe Wang, On the regularity theory of fully nonlinear parabolic equations. II, Comm. Pure Appl. Math. 45 (1992), no. 2, 141–178. MR 1139064, DOI 10.1002/cpa.3160450202
Bibliographic Information
- P. Daskalopoulos
- Affiliation: Department of Mathematics, University of California, Irvine, California 92697-3875
- MR Author ID: 353551
- Email: pdaskalo@math.uci.edu
- R. Hamilton
- Affiliation: Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0001
- Received by editor(s): January 19, 1998
- © Copyright 1998 American Mathematical Society
- Journal: J. Amer. Math. Soc. 11 (1998), 899-965
- MSC (1991): Primary 35Jxx
- DOI: https://doi.org/10.1090/S0894-0347-98-00277-X
- MathSciNet review: 1623198