A bilinear approach to the restriction and Kakeya conjectures
HTML articles powered by AMS MathViewer
- by Terence Tao, Ana Vargas and Luis Vega
- J. Amer. Math. Soc. 11 (1998), 967-1000
- DOI: https://doi.org/10.1090/S0894-0347-98-00278-1
- PDF | Request permission
Abstract:
Bilinear restriction estimates have appeared in work of Bourgain, Klainerman, and Machedon. In this paper we develop the theory of these estimates (together with the analogues for Kakeya estimates). As a consequence we improve the $(L^p,L^p)$ spherical restriction theorem of Wolff from $p > 42/11$ to $p > 34/9$, and also obtain a sharp $(L^p,L^q)$ spherical restriction theorem for $q> 4 - \frac {5}{27}$.References
- Michael Beals, Self-spreading and strength of singularities for solutions to semilinear wave equations, Ann. of Math. (2) 118 (1983), no. 1, 187–214. MR 707166, DOI 10.2307/2006959
- J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), no. 2, 147–187. MR 1097257, DOI 10.1007/BF01896376
- Jean Bourgain, On the restriction and multiplier problems in $\textbf {R}^3$, Geometric aspects of functional analysis (1989–90), Lecture Notes in Math., vol. 1469, Springer, Berlin, 1991, pp. 179–191. MR 1122623, DOI 10.1007/BFb0089225
- J. Bourgain, A remark on Schrödinger operators, Israel J. Math. 77 (1992), no. 1-2, 1–16. MR 1194782, DOI 10.1007/BF02808007
- J. Bourgain, Estimates for cone multipliers, Geometric aspects of functional analysis (Israel, 1992–1994) Oper. Theory Adv. Appl., vol. 77, Birkhäuser, Basel, 1995, pp. 41–60. MR 1353448
- Jean Bourgain, Some new estimates on oscillatory integrals, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991) Princeton Math. Ser., vol. 42, Princeton Univ. Press, Princeton, NJ, 1995, pp. 83–112. MR 1315543
- Lennart Carleson and Per Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287–299. (errata insert). MR 361607, DOI 10.4064/sm-44-3-287-299
- Antonio Cordoba, The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math. 99 (1977), no. 1, 1–22. MR 447949, DOI 10.2307/2374006
- S. W. Drury, $L^{p}$ estimates for the X-ray transform, Illinois J. Math. 27 (1983), no. 1, 125–129. MR 684547, DOI 10.1215/ijm/1256065417
- Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36. MR 257819, DOI 10.1007/BF02394567
- Charles Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336. MR 296602, DOI 10.2307/1970864
- Lars Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79–183. MR 388463, DOI 10.1007/BF02392052
- N. Katz, preprint.
- S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221–1268. MR 1231427, DOI 10.1002/cpa.3160460902
- Sergiu Klainerman and Matei Machedon, Remark on Strichartz-type inequalities, Internat. Math. Res. Notices 5 (1996), 201–220. With appendices by Jean Bourgain and Daniel Tataru. MR 1383755, DOI 10.1155/S1073792896000153
- Sergiu Klainerman and Matei Machedon, On the regularity properties of a model problem related to wave maps, Duke Math. J. 87 (1997), no. 3, 553–589. MR 1446618, DOI 10.1215/S0012-7094-97-08718-4
- A. Moyua, A. Vargas, and L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform, Internat. Math. Res. Notices 16 (1996), 793–815. MR 1413873, DOI 10.1155/S1073792896000499
- A. Moyua, A. Vargas, L. Vega, Restriction theorems and Maximal operators related to oscillatory integrals in $\mathbf {R}^3$, to appear, Duke Math. J.
- W. Schlag, A generalization of Bourgain’s circular maximal theorem, J. Amer. Math. Soc. 10 (1997), no. 1, 103–122. MR 1388870, DOI 10.1090/S0894-0347-97-00217-8
- W. Schlag, A geometric proof of the circular maximal theorem, to appear, Duke Math. J.
- W. Schlag, A geometric inequality with applications to the Kakeya problem in three dimensions, to appear, Geometric and Functional Analysis.
- C. D. Sogge, Concerning Nikodym-type sets in 3-dimensional curved space, preprint.
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- T. Tao, The Bochner-Riesz conjecture implies the Restriction conjecture, to appear, Duke Math J.
- T. Tao, A. Vargas, A bilinear approach to cone multipliers and related operators, in preparation.
- Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477–478. MR 358216, DOI 10.1090/S0002-9904-1975-13790-6
- Thomas Wolff, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana 11 (1995), no. 3, 651–674. MR 1363209, DOI 10.4171/RMI/188
- T. H. Wolff, A mixed norm estimate for the x-ray transform, to appear in Revista Mat. Iberoamericana.
Bibliographic Information
- Terence Tao
- Affiliation: Department of Mathematics, University of California–Los Angeles, Los Angeles, California 90024
- MR Author ID: 361755
- ORCID: 0000-0002-0140-7641
- Email: tao@math.ucla.edu
- Ana Vargas
- Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Email: ana.vargas@uam.es
- Luis Vega
- Affiliation: Departamento de Matemáticas, Universidad del País Vasco, Apartado 644, 48080, Bilbao, Spain
- MR Author ID: 237776
- Email: mtpvegol@lg.ehu.es
- Received by editor(s): February 20, 1998
- Additional Notes: The second author was partially supported by the Spanish DGICYT (grant number PB94-149) and the European Commission via the TMR network (Harmonic Analysis).
- © Copyright 1998 American Mathematical Society
- Journal: J. Amer. Math. Soc. 11 (1998), 967-1000
- MSC (1991): Primary 42B10, 42B25
- DOI: https://doi.org/10.1090/S0894-0347-98-00278-1
- MathSciNet review: 1625056