Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case
HTML articles powered by AMS MathViewer
- by J. Bourgain
- J. Amer. Math. Soc. 12 (1999), 145-171
- DOI: https://doi.org/10.1090/S0894-0347-99-00283-0
- PDF | Request permission
Abstract:
We establish global wellposedness and scattering for the $H^{1}$- critical defocusing NLS in 3D \begin{equation*}iu_{t}+\Delta u - u|u|^{4}=0 \end{equation*} assuming radial data $\phi \in H^{s}$, $s\geq 1$. In particular, it proves global existence of classical solutions in the radial case. The same result is obtained in 4D for the equation \begin{equation*}iu_{t}+\Delta u -u|u|^{2} =0. \end{equation*}References
- Jeng Eng Lin and Walter A. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Functional Analysis 30 (1978), no. 2, 245–263. MR 515228, DOI 10.1016/0022-1236(78)90073-3
- Michael Struwe, Globally regular solutions to the $u^5$ Klein-Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 3, 495–513 (1989). MR 1015805
- Manoussos G. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2) 132 (1990), no. 3, 485–509. MR 1078267, DOI 10.2307/1971427
- Jalal Shatah and Michael Struwe, Regularity results for nonlinear wave equations, Ann. of Math. (2) 138 (1993), no. 3, 503–518. MR 1247991, DOI 10.2307/2946554
- T. Cazenave, An introduction to nonlinear Schrödinger equations, Textos de Metodes Matematicos 26 (Rio de Janeiro).
- Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal. 14 (1990), no. 10, 807–836. MR 1055532, DOI 10.1016/0362-546X(90)90023-A
- J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9) 64 (1985), no. 4, 363–401. MR 839728
- Jean Ginibre and Giorgio Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z. 170 (1980), no. 2, 109–136. MR 562582, DOI 10.1007/BF01214768
- Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705–714. MR 512086
Bibliographic Information
- J. Bourgain
- Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
- MR Author ID: 40280
- Email: bourgain@math.ias.edu
- Received by editor(s): April 20, 1998
- © Copyright 1999 American Mathematical Society
- Journal: J. Amer. Math. Soc. 12 (1999), 145-171
- MSC (1991): Primary 35Q55, 35L15
- DOI: https://doi.org/10.1090/S0894-0347-99-00283-0
- MathSciNet review: 1626257