Simple groups, permutation groups, and probability
HTML articles powered by AMS MathViewer
- by Martin W. Liebeck and Aner Shalev
- J. Amer. Math. Soc. 12 (1999), 497-520
- DOI: https://doi.org/10.1090/S0894-0347-99-00288-X
- PDF | Request permission
Abstract:
We derive a new bound for the minimal degree of an almost simple primitive permutation group, and settle a conjecture of Cameron and Kantor concerning the base size of such a group. Additional results concern random generation of simple groups, and the so-called genus conjecture of Guralnick and Thompson. Our proofs are based on probabilistic arguments, together with a new result concerning the size of the intersection of a maximal subgroup of a classical group with a conjugacy class of elements.References
- M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no. 3, 469–514. MR 746539, DOI 10.1007/BF01388470
- Michael Aschbacher and Gary M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1–91. MR 422401, DOI 10.1017/S0027763000017438
- László Babai, On the order of uniprimitive permutation groups, Ann. of Math. (2) 113 (1981), no. 3, 553–568. MR 621016, DOI 10.2307/2006997
- Peter J. Cameron, Some open problems on permutation groups, Groups, combinatorics & geometry (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 340–350. MR 1200272, DOI 10.1017/CBO9780511629259.030
- Peter J. Cameron, Permutation groups, Handbook of combinatorics, Vol. 1, 2, Elsevier Sci. B. V., Amsterdam, 1995, pp. 611–645. MR 1373668
- Peter J. Cameron and William M. Kantor, Random permutations: some group-theoretic aspects, Combin. Probab. Comput. 2 (1993), no. 3, 257–262. MR 1264032, DOI 10.1017/S0963548300000651
- C. W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with $(B,$ $N)$-pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 81–116. MR 347996, DOI 10.1007/BF02684695
- John D. Dixon, The probability of generating the symmetric group, Math. Z. 110 (1969), 199–205. MR 251758, DOI 10.1007/BF01110210
- D. Gluck, Á. Seress and A. Shalev, Bases for primitive permutation groups and a conjecture of Babai, J. Algebra 199 (1998), 367-378.
- Daniel Gorenstein and Richard Lyons, The local structure of finite groups of characteristic $2$ type, Mem. Amer. Math. Soc. 42 (1983), no. 276, vii+731. MR 690900, DOI 10.1090/memo/0276
- Robert M. Guralnick, The genus of a permutation group, Groups, combinatorics & geometry (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 351–363. MR 1200273, DOI 10.1017/CBO9780511629259.031
- R.M. Guralnick and W.M. Kantor, Probabilistic generation of finite simple groups, J. Algebra, to appear.
- Robert M. Guralnick, William M. Kantor, and Jan Saxl, The probability of generating a classical group, Comm. Algebra 22 (1994), no. 4, 1395–1402. MR 1261266, DOI 10.1080/00927879408824912
- R.M. Guralnick, M.W. Liebeck, J. Saxl and A. Shalev, Random generation of finite simple groups, to appear.
- R.M. Guralnick and K. Magaard, On the minimal degree of a primitive permutation group, J. Algebra 207 (1998), 127-145.
- Robert M. Guralnick and John G. Thompson, Finite groups of genus zero, J. Algebra 131 (1990), no. 1, 303–341. MR 1055011, DOI 10.1016/0021-8693(90)90178-Q
- J. I. Hall, Martin W. Liebeck, and Gary M. Seitz, Generators for finite simple groups, with applications to linear groups, Quart. J. Math. Oxford Ser. (2) 43 (1992), no. 172, 441–458. MR 1188385, DOI 10.1093/qmathj/43.4.441
- William M. Kantor and Alexander Lubotzky, The probability of generating a finite classical group, Geom. Dedicata 36 (1990), no. 1, 67–87. MR 1065213, DOI 10.1007/BF00181465
- Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341, DOI 10.1017/CBO9780511629235
- Martin W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc. London Math. Soc. (3) 50 (1985), no. 3, 426–446. MR 779398, DOI 10.1112/plms/s3-50.3.426
- Martin W. Liebeck, On minimal degrees and base sizes of primitive permutation groups, Arch. Math. (Basel) 43 (1984), no. 1, 11–15. MR 758332, DOI 10.1007/BF01193603
- Martin W. Liebeck and Chris Wayman Purvis, On the genus of a finite classical group, Bull. London Math. Soc. 29 (1997), no. 2, 159–164. MR 1425992, DOI 10.1112/S0024609396002135
- M.W. Liebeck and L. Pyber, Upper bounds for the number of conjugacy classes of a finite group, J. Algebra 198 (1997), 538-562.
- Martin W. Liebeck and Jan Saxl, Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces, Proc. London Math. Soc. (3) 63 (1991), no. 2, 266–314. MR 1114511, DOI 10.1112/plms/s3-63.2.266
- Martin W. Liebeck and Aner Shalev, The probability of generating a finite simple group, Geom. Dedicata 56 (1995), no. 1, 103–113. MR 1338320, DOI 10.1007/BF01263616
- Martin W. Liebeck and Aner Shalev, Classical groups, probabilistic methods, and the $(2,3)$-generation problem, Ann. of Math. (2) 144 (1996), no. 1, 77–125. MR 1405944, DOI 10.2307/2118584
- Martin W. Liebeck, Cheryl E. Praeger, and Jan Saxl, On the $2$-closures of finite permutation groups, J. London Math. Soc. (2) 37 (1988), no. 2, 241–252. MR 928521, DOI 10.1112/jlms/s2-37.2.241
- Wilhelm Magnus, Noneuclidean tesselations and their groups, Pure and Applied Mathematics, Vol. 61, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0352287
- A. Shalev, A theorem on random matrices and some applications, J. Algebra 199 (1998), 124-141.
- Aner Shalev, Random generation of simple groups by two conjugate elements, Bull. London Math. Soc. 29 (1997), no. 5, 571–576. MR 1458717, DOI 10.1112/S002460939700338X
- T. Shih, Bounds of Fixed Point Ratios of Permutation Representations of $GL_n(q)$ and Groups of Genus Zero, Ph.D. Thesis, California Institute of Technology, Pasadena, 1990.
- G. E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc. 3 (1963), 1–62. MR 0150210, DOI 10.1017/S1446788700027622
Bibliographic Information
- Martin W. Liebeck
- Affiliation: Department of Mathematics, Imperial College, London SW7 2BZ, England
- MR Author ID: 113845
- ORCID: 0000-0002-3284-9899
- Email: m.liebeck@ic.ac.uk
- Aner Shalev
- Affiliation: Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
- MR Author ID: 228986
- ORCID: 0000-0001-9428-2958
- Email: shalev@math.huji.il
- Received by editor(s): May 14, 1998
- Received by editor(s) in revised form: August 26, 1998
- Additional Notes: The second author acknowledges the support of the Israel Science Foundation, administered by the Israeli Academy of Sciences and Humanities.
- © Copyright 1999 American Mathematical Society
- Journal: J. Amer. Math. Soc. 12 (1999), 497-520
- MSC (1991): Primary 20D06; Secondary 20P05
- DOI: https://doi.org/10.1090/S0894-0347-99-00288-X
- MathSciNet review: 1639620