Double Bruhat cells and total positivity
HTML articles powered by AMS MathViewer
- by Sergey Fomin and Andrei Zelevinsky
- J. Amer. Math. Soc. 12 (1999), 335-380
- DOI: https://doi.org/10.1090/S0894-0347-99-00295-7
Abstract:
We study the totally nonnegative variety $G_{\ge 0}$ in a semisimple algebraic group $G$. These varieties were introduced by G. Lusztig, and include as a special case the variety of unimodular matrices of a given order whose all minors are nonnegative. The geometric framework for our study is provided by intersecting $G_{\ge 0}$ with double Bruhat cells (intersections of cells of the two Bruhat decompositions of $G$ with respect to opposite Borel subgroups).References
- J. L. Alperin and Rowen B. Bell, Groups and representations, Graduate Texts in Mathematics, vol. 162, Springer-Verlag, New York, 1995. MR 1369573, DOI 10.1007/978-1-4612-0799-3
- T. Ando, Totally positive matrices, Linear Algebra Appl. 90 (1987), 165–219. MR 884118, DOI 10.1016/0024-3795(87)90313-2
- Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), no. 1, 49–149. MR 1405449, DOI 10.1006/aima.1996.0057
- A. Berenstein and A. Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), 128–166.
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Francesco Brenti, Combinatorics and total positivity, J. Combin. Theory Ser. A 71 (1995), no. 2, 175–218. MR 1342446, DOI 10.1016/0097-3165(95)90000-4
- David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. An introduction to computational algebraic geometry and commutative algebra. MR 1417938
- Colin W. Cryer, The $LU$-factorization of totally positive matrices, Linear Algebra Appl. 7 (1973), 83–92. MR 311688, DOI 10.1016/0024-3795(73)90039-6
- Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), no. 3, 499–511. MR 782232, DOI 10.1007/BF01388520
- M. Fekete, Über ein Problem von Laguerre, Rendiconti del Circ. Mat. Palermo 34 (1912), 89-100, 110–120.
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- F. R. Gantmacher and M. G. Kreĭn, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme, Mathematische Lehrbücher und Monographien, I. Abteilung, Bd. V, Akademie-Verlag, Berlin, 1960 (German). Wissenschaftliche Bearbeitung der deutschen Ausgabe: Alfred Stöhr. MR 0114338
- M. Gasca and J. M. Peña, Total positivity and Neville elimination, Linear Algebra Appl. 165 (1992), 25–44. MR 1149743, DOI 10.1016/0024-3795(92)90226-Z
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Samuel Karlin, Total positivity. Vol. I, Stanford University Press, Stanford, Calif., 1968. MR 0230102
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- T. Muir, The theory of determinants, 2nd edition, vol. 1, Macmillan, London, 1906.
- Konstanze Rietsch, Intersections of Bruhat cells in real flag varieties, Internat. Math. Res. Notices 13 (1997), 623–640. With an appendix by G. Lusztig. MR 1459628, DOI 10.1155/S107379289700041X
- B. Shapiro, M. Shapiro, and A. Vainshtein, Connected components in the intersection of two open opposite Schubert cells in $\textrm {SL}_n(\textbf {R})/B$, Internat. Math. Res. Notices 10 (1997), 469–493. MR 1446839, DOI 10.1155/S1073792897000329
- T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser, Boston, Mass., 1981. MR 632835
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
Bibliographic Information
- Sergey Fomin
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 230455
- ORCID: 0000-0002-4714-6141
- Email: fomin@math.mit.edu
- Andrei Zelevinsky
- Affiliation: Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
- Email: andrei@neu.edu
- Received by editor(s): February 12, 1998
- Additional Notes: The authors were supported in part by NSF grants #DMS-9400914, #DMS-9625511, and #DMS-9700927, and by MSRI (NSF grant #DMS-9022140).
- © Copyright 1999 by Sergey Fomin and Andrei Zelevinsky
- Journal: J. Amer. Math. Soc. 12 (1999), 335-380
- MSC (1991): Primary 22E46; Secondary 05E15, 15A23
- DOI: https://doi.org/10.1090/S0894-0347-99-00295-7
- MathSciNet review: 1652878