An A$_2$ Bailey lemma and Rogers-Ramanujan-type identities
HTML articles powered by AMS MathViewer
- by George E. Andrews, Anne Schilling and S. Ole Warnaar
- J. Amer. Math. Soc. 12 (1999), 677-702
- DOI: https://doi.org/10.1090/S0894-0347-99-00297-0
- Published electronically: April 23, 1999
- PDF | Request permission
Abstract:
Using new $q$-functions recently introduced by Hatayama et al. and by (two of) the authors, we obtain an A$_2$ version of the classical Bailey lemma. We apply our result, which is distinct from the A$_2$ Bailey lemma of Milne and Lilly, to derive Rogers–Ramanujan-type identities for characters of the W$_3$ algebra.References
- A. K. Agarwal, G. E. Andrews, and D. M. Bressoud, The Bailey lattice, J. Indian Math. Soc. (N.S.) 51 (1987), 57–73 (1988). MR 988309
- George E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4082–4085. MR 351985, DOI 10.1073/pnas.71.10.4082
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- George E. Andrews, Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984), no. 2, 267–283. MR 757501, DOI 10.2140/pjm.1984.114.267
- George E. Andrews, R. J. Baxter, D. M. Bressoud, W. H. Burge, P. J. Forrester, and G. Viennot, Partitions with prescribed hook differences, European J. Combin. 8 (1987), no. 4, 341–350. MR 930170, DOI 10.1016/S0195-6698(87)80041-0
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- David M. Bressoud, A generalization of the Rogers-Ramanujan identities for all moduli, J. Combin. Theory Ser. A 27 (1979), no. 1, 64–68. MR 541344, DOI 10.1016/0097-3165(79)90008-6
- David M. Bressoud, An analytic generalization of the Rogers-Ramanujan identities with interpretation, Quart. J. Math. Oxford Ser. (2) 31 (1980), no. 124, 385–399. MR 596974, DOI 10.1093/qmath/31.4.385
- David M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54. MR 556608, DOI 10.1090/memo/0227
- D. M. Bressoud, The Bailey lattice: an introduction, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 57–67. MR 938960
- Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635–652. MR 522147, DOI 10.1090/S0002-9904-1972-12971-9
- Sunil Kumar, Rakesh Prasad, M. P. Benjwal, and D. C. Joshi, Classical Yang-Mills theory in presence of extended electric and magnetic sources, Acta Phys. Polon. B 18 (1987), no. 12, 1087–1097. MR 931837
- W. Fulton, Young tableaux: with applications to representation theory and geometry, London Math. Soc. student texts 35, Cambridge University Press (1997).
- George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey. MR 1052153
- Ira M. Gessel and C. Krattenthaler, Cylindric partitions, Trans. Amer. Math. Soc. 349 (1997), no. 2, 429–479. MR 1389777, DOI 10.1090/S0002-9947-97-01791-1
- Basil Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math. 83 (1961), 393–399. MR 123484, DOI 10.2307/2372962
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- G. Hatayama, A. N. Kirillov, A. Kuniba, M. Okado, T. Takagi and Y. Yamada, Character formulae of $\widehat {sl}_n$-modules and inhomogeneous paths, Nucl. Phys. B 536 [PM] (1999), 575–616.
- Michio Jimbo, Tetsuji Miwa, and Masato Okado, Local state probabilities of solvable lattice models: an $A^{(1)}_{n-1}$ family, Nuclear Phys. B 300 (1988), no. 1, FS22, 74–108. MR 953494, DOI 10.1016/0550-3213(88)90587-1
- Anatol N. Kirillov, Dilogarithm identities, Progr. Theoret. Phys. Suppl. 118 (1995), 61–142. Quantum field theory, integrable models and beyond (Kyoto, 1994). MR 1356515, DOI 10.1143/PTPS.118.61
- A. N. Kirillov, New combinatorial formula for Hall–Littlewood polynomials, math.QA/9803006.
- A. N. Kirillov and N. Yu. Reshetikhin, The Bethe Ansatz and the combinatorics of Young tableaux, J. Soviet Math. 41 (1988), 925–955.
- Christian Krattenthaler, Generating functions for plane partitions of a given shape, Manuscripta Math. 69 (1990), no. 2, 173–201. MR 1072987, DOI 10.1007/BF02567918
- Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki, Ferro- and antiferro-magnetizations in RSOS models, Nuclear Phys. B 356 (1991), no. 3, 750–774. MR 1115853, DOI 10.1016/0550-3213(91)90385-B
- I. G. Macdonald, Affine root systems and Dedekind’s $\eta$-function, Invent. Math. 15 (1972), 91–143. MR 357528, DOI 10.1007/BF01418931
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- P. A. MacMahon, Combinatory Analysis, Vol. 2 (Cambridge University Press, London and New York, 1916).
- S. C. Milne, Classical partition functions and the $\textrm {U}(n+1)$ Rogers-Selberg identity, Discrete Math. 99 (1992), no. 1-3, 199–246. MR 1158789, DOI 10.1016/0012-365X(92)90374-O
- S. C. Milne, A $q$-analog of a Whipple’s transformation for hypergeometric series in $\textrm {U}(n)$, Adv. Math. 108 (1994), no. 1, 1–76. MR 1293581, DOI 10.1006/aima.1994.1065
- Stephen C. Milne and Glenn M. Lilly, The $A_l$ and $C_l$ Bailey transform and lemma, Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, 258–263. MR 1118702, DOI 10.1090/S0273-0979-1992-00268-9
- Stephen C. Milne and Glenn M. Lilly, Consequences of the $A_l$ and $C_l$ Bailey transform and Bailey lemma, Discrete Math. 139 (1995), no. 1-3, 319–346. Formal power series and algebraic combinatorics (Montreal, PQ, 1992). MR 1336846, DOI 10.1016/0012-365X(94)00139-A
- S. Mizoguchi, The structure of representation for the $W_{(3)}$ minimal model, Internat. J. Modern Phys. A 6 (1991), no. 1, 133–162. MR 1086783, DOI 10.1142/S0217751X91000125
- T. Nakanishi, Non-unitary minimal models and RSOS models, Nucl. Phys. B 334 (1990), 745–766.
- Peter Paule, On identities of the Rogers-Ramanujan type, J. Math. Anal. Appl. 107 (1985), no. 1, 255–284. MR 786027, DOI 10.1016/0022-247X(85)90368-3
- L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894), 318–343.
- L. J. Rogers, On two theorems of combinatory analysis and some allied identities, Proc. London Math. Soc. (2) 16 (1917), 315–336.
- L. J. Rogers and S. Ramanujan, Proof of certain identities in combinatory analysis, Proc. Cambridge Phil. Soc. 19 (1919), 211–216.
- A. Schilling and S. O. Warnaar, Inhomogeneous lattice paths, generalized Kostka polynomials and A$_{n-1}$ supernomials, math.QA/9802111. To appear in Commun. Math. Phys.
- I. J. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche, S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl. (1917), 302–321.
- A. B. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Teo. Mat. Fiz. 65 (1985), 347–359.
Bibliographic Information
- George E. Andrews
- Affiliation: Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802
- MR Author ID: 26060
- Email: andrews@math.psu.edu
- Anne Schilling
- Affiliation: Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
- MR Author ID: 352840
- ORCID: 0000-0002-2601-7340
- Email: schillin@wins.uva.nl
- S. Ole Warnaar
- MR Author ID: 269674
- Email: warnaar@wins.uva.nl
- Received by editor(s): August 8, 1998
- Published electronically: April 23, 1999
- Additional Notes: The second author was supported by the “Stichting Fundamenteel Onderzoek der Materie”.
The third author was supported by a fellowship of the Royal Netherlands Academy of Arts and Sciences. - © Copyright 1999 American Mathematical Society
- Journal: J. Amer. Math. Soc. 12 (1999), 677-702
- MSC (1991): Primary 05A30, 05A19; Secondary 33D90, 33D15, 11P82
- DOI: https://doi.org/10.1090/S0894-0347-99-00297-0
- MathSciNet review: 1669957