## Separation of semialgebraic sets

HTML articles powered by AMS MathViewer

- by F. Acquistapace, C. Andradas and F. Broglia PDF
- J. Amer. Math. Soc.
**12**(1999), 703-728 Request permission

## Abstract:

In this paper we study the problem of deciding whether two disjoint semialgebraic sets of an algebraic variety over $\mathbb R$ are separable by a polynomial. For that we isolate a dense subfamily of Spaces of Orderings, named Geometric, which suffice to test separation and that reduce the problem to the study of the behaviour of the semialgebraic sets in their boundary. Then we derive several characterizations for the generic separation, among which there is a Geometric Criterion that can be tested algorithmically. Finally we show how to check recursively whether we can pass from generic separation to separation, obtaining a decision procedure for solving the problem.## References

- F. Acquistapace, C. Andradas, F. Broglia: “Classification of obstructions for separation of Semialgebraic Sets in dimension 3”,
*Rev. Matematica U.C.M.*(1997) 27–49.**10**(número suplementario) - F. Acquistapace, F. Broglia, and E. Fortuna,
*A separation theorem in dimension $3$*, Nagoya Math. J.**143**(1996), 171–193. MR**1413012**, DOI 10.1017/S0027763000005973 - Carlos Andradas, Ludwig Bröcker, and Jesús M. Ruiz,
*Constructible sets in real geometry*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 33, Springer-Verlag, Berlin, 1996. MR**1393194**, DOI 10.1007/978-3-642-80024-5 - Carlos Andradas and Jesús M. Ruiz,
*More on basic semialgebraic sets*, Real algebraic geometry (Rennes, 1991) Lecture Notes in Math., vol. 1524, Springer, Berlin, 1992, pp. 128–139. MR**1226246**, DOI 10.1007/BFb0084613 - Carlos Andradas and Jesús Ruiz,
*Low-dimensional sections of basic semialgebraic sets*, Illinois J. Math.**38**(1994), no. 2, 303–326. MR**1260845** - Carlos Andradas and Jesús M. Ruiz,
*Ubiquity of Łojasiewicz’s example of a nonbasic semialgebraic set*, Michigan Math. J.**41**(1994), no. 3, 465–472. MR**1297702**, DOI 10.1307/mmj/1029005073 - E. Becker and R. Neuhaus,
*Computation of real radicals of polynomial ideals*, Computational algebraic geometry (Nice, 1992) Progr. Math., vol. 109, Birkhäuser Boston, Boston, MA, 1993, pp. 1–20. MR**1230854**, DOI 10.1007/s10107-004-0561-4 - Edward Bierstone and Pierre D. Milman,
*Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant*, Invent. Math.**128**(1997), no. 2, 207–302. MR**1440306**, DOI 10.1007/s002220050141 - J. Bochnak, M. Coste, and M.-F. Roy,
*Géométrie algébrique réelle*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12, Springer-Verlag, Berlin, 1987 (French). MR**949442** - Jacek Bochnak and Gustave Efroymson,
*Real algebraic geometry and the 17th Hilbert problem*, Math. Ann.**251**(1980), no. 3, 213–241. MR**589251**, DOI 10.1007/BF01428942 - Ludwig Bröcker,
*Spaces of orderings and semialgebraic sets*, Quadratic and Hermitian forms (Hamilton, Ont., 1983) CMS Conf. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 1984, pp. 231–248. MR**776457**, DOI 10.1216/rmj-1984-14-4-935 - Ludwig Bröcker,
*Characterization of fans and hereditarily Pythagorean fields*, Math. Z.**151**(1976), no. 2, 149–163. MR**422233**, DOI 10.1007/BF01213992 - Ludwig Bröcker,
*On the separation of basic semialgebraic sets by polynomials*, Manuscripta Math.**60**(1988), no. 4, 497–508. MR**933478**, DOI 10.1007/BF01258667 - Ludwig Bröcker,
*On basic semialgebraic sets*, Exposition. Math.**9**(1991), no. 4, 289–334. MR**1137812** - Ludwig Bröcker and Gilbert Stengle,
*On the Mostowski number*, Math. Z.**203**(1990), no. 4, 629–633. MR**1044068**, DOI 10.1007/BF02570760 - G. Hermann: “Die Frage der endlich vielen Schritte in der Theorie der Polynomideale”,
*Math. Annalen 95*(1926). - Heisuke Hironaka,
*Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II*, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2)**79**(1964), 205–326. MR**0199184**, DOI 10.2307/1970547 - Tadeusz Mostowski,
*Some properties of the ring of Nash functions*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**3**(1976), no. 2, 245–266. MR**412180** - Murray Marshall,
*Classification of finite spaces of orderings*, Canadian J. Math.**31**(1979), no. 2, 320–330. MR**528811**, DOI 10.4153/CJM-1979-035-4 - Murray A. Marshall,
*Quotients and inverse limits of spaces of orderings*, Canadian J. Math.**31**(1979), no. 3, 604–616. MR**536366**, DOI 10.4153/CJM-1979-061-4 - Murray Marshall,
*The Witt ring of a space of orderings*, Trans. Amer. Math. Soc.**258**(1980), no. 2, 505–521. MR**558187**, DOI 10.1090/S0002-9947-1980-0558187-8 - Murray Marshall,
*Spaces of orderings. IV*, Canadian J. Math.**32**(1980), no. 3, 603–627. MR**586979**, DOI 10.4153/CJM-1980-047-0 - Murray A. Marshall,
*Spaces of orderings and abstract real spectra*, Lecture Notes in Mathematics, vol. 1636, Springer-Verlag, Berlin, 1996. MR**1438785**, DOI 10.1007/BFb0092696 - E. Becker and R. Neuhaus,
*Computation of real radicals of polynomial ideals*, Computational algebraic geometry (Nice, 1992) Progr. Math., vol. 109, Birkhäuser Boston, Boston, MA, 1993, pp. 1–20. MR**1230854**, DOI 10.1007/s10107-004-0561-4 - A. Prestel: “Model Theory for the Real Algebraic Geometer”, to appear as a
*Quaderni del Dottorato del Dipartimento de Matematica, Università di Pisa*(1998). - Jesús M. Ruiz,
*A note on a separation problem*, Arch. Math. (Basel)**43**(1984), no. 5, 422–426. MR**773190**, DOI 10.1007/BF01193850

## Additional Information

**F. Acquistapace**- Affiliation: Dipartimento di Matematica, Università di Pisa, Via Buonarroti 2, 56127 Pisa, Italy
- Email: acquistf@gauss.dm.unipi.it
**C. Andradas**- Affiliation: Departamento de Algebra, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain
- Email: andradas@sunal1.mat.ucm.es
**F. Broglia**- Affiliation: Dipartimento di Matematica, Università di Pisa, Via Buonarroti 2, 56127 Pisa, Italy
- MR Author ID: 41870
- Email: broglia@gauss.dm.unipi.it
- Received by editor(s): February 3, 1997
- Received by editor(s) in revised form: August 31, 1998
- Published electronically: April 23, 1999
- Additional Notes: This work was partially supported by EC contract CHRX-CT94-0506.

The first and third authors are members of GNSAGA of CNR, and were partially supported by MURST

The second author was partially supported by DGICYT PB95-0354 and the Fundación del Amo, UCM - © Copyright 1999 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**12**(1999), 703-728 - MSC (1991): Primary 14P10
- DOI: https://doi.org/10.1090/S0894-0347-99-00302-1
- MathSciNet review: 1672874