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FOLIATIONS WITH GOOD GEOMETRY

SÉRGIO R. FENLEY

1. Introduction

The goal of this article is to show that there is a large class of closed hyperbolic
3-manifolds admitting codimension one foliations with good large scale geometric
properties. We obtain results in two directions. First there is an internal result:
A possibly singular foliation in a manifold is quasi-isometric if, when lifted to the
universal cover, distance along leaves is efficient up to a bounded multiplicative
distortion in measuring distance in the universal cover. This means that leaves
reflect very well the geometry in the large of the universal cover and are geomet-
rically tight - this is the best geometric behavior. We previously proved that non-
singular codimension one foliations in closed hyperbolic 3-manifolds can never be
quasi-isometric. In this article we produce a large class of singular quasi-isometric,
codimension one foliations in closed hyperbolic 3-manifolds. The foliations are
stable and unstable foliations of pseudo-Anosov flows. Our second result is an ex-
ternal result, relating (nonsingular) foliations in hyperbolic 3-manifolds with their
limit sets in the universal cover, that is, showing that leaves in the universal cover
have good asymptotic behavior. Let G be a Reebless, finite depth foliation in a
closed hyperbolic 3-manifold. Then G is not quasi-isometric, but suppose that G is
transverse to a quasigeodesic pseudo-Anosov flow with quasi-isometric stable and
unstable foliations - which are given by the internal result. We then show that the
lifts of leaves of G to the universal cover extend continuously to the sphere at in-
finity and we also produce infinitely many examples satisfying the hypothesis. The
main tools used to prove these results are first a link between geometric properties
of stable/unstable foliations of pseudo-Anosov flows and the topology of these foli-
ations in the universal cover, and second a topological theory of the joint structure
of the pseudo-Anosov foliations in the universal cover.

Reebless codimension one foliations are extremely useful for understanding the
topology of 3-manifolds. For instance they imply that the manifold is irreducible
[Ro], its universal cover is homeomorphic to R3 [Pa], leaves are π1-injective [No]
and transversals are never null homotopic [No]. Hence they reflect topological
properties of the manifold. As for which manifolds have Reebless foliations, Gabai
[Ga1, Ga2, Ga3] proved that any compact, oriented, irreducible 3-manifold with
nonzero first Betti number has many Reebless finite depth foliations. Roughly, a
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finite depth foliation is one that reflects the topology of the manifold extremely well
in the sense that it is associated to a hierarchy (in the sutured manifold world) of
the manifold. They can also be thought of as generalizations of fibrations. These
results of Gabai had many important consequences for the study of 3-manifolds.

From a geometric point of view the geometrization conjecture [Th4] states that
closed, irreducible, atoroidal 3-manifolds are either Seifert fibered or hyperbolic.
An important question then is to understand how a Reebless foliation interacts
with such structures. In Seifert fibered spaces, Reebless foliations are relatively
well understood and interact very well with the Seifert fibration [Th1, Br]. There
are also some structure results in graph manifolds [Ba, BNR]. Our interest is in
understanding foliations in hyperbolic 3-manifolds. In that case it is essential to
relate the foliation to the geometry (in the large) of the universal cover and to its
ideal compactification with a sphere at infinity. This study of the geometry has
some important antecedents. Consider a π1-injective surface in a closed hyperbolic
3-manifold. Then deep work of Marden [Ma], Thurston [Th2] and Bonahon [Bo]
implies a fundamental dichotomy: either the surface is geometrically very good
(geometrically finite) or it is a virtual fiber (geometrically infinite), which is geo-
metrically very bad. This is used in the proof of the hyperbolization theorem in the
Haken case [Th2, Mor]. One important motivation to understand the possible geo-
metric behaviors of Reebless foliations and also essential laminations in hyperbolic
3-manifolds, is that it may shed some light in trying to prove the geometrization
conjecture for foliated or laminar manifolds.

In general what are good geometric properties for a foliation? The best property
is that leaves are totally geodesic. These occur for instance in the 3-torus, in
manifolds supporting suspension Anosov flows (which have solv geometry [Sc]) and
in fact in any torus or sphere bundle over the circle. On the other hand Zeghib
[Ze] showed that closed hyperbolic 3-manifolds do not admit geodesic foliations.
One can relax this geodesic condition, introducing a notion which is extremely
useful for hyperbolic 3-manifolds, namely quasi-isometric. A foliation is said to be
quasi-isometric if, when lifted to the universal cover, the path distance along its
leaves measures distance in the ambient manifold up to a bounded multiplicative
distortion. The quasiproperties turn out to be almost as effective as the exact
properties in hyperbolic manifolds. The lift of a quasi-isometric leaf has excellent
properties: its limit set is a Jordan curve in the sphere at infinity and the leaf
itself is a bounded distance from the hyperbolic convex hull of its limit set - it is
geometrically tight [Ma, Th1].

We previously proved that there are no quasi-isometric (nonsingular) foliations
in closed hyperbolic 3-manifolds [Fe2]. This basically depends on the leaf space
of the foliation in the universal cover. If the leaf space is not Hausdorff there are
points x, y in distinct leaves being approximated by xi, yi in the same leaf (for
each i), contradicting quasi-isometric behavior. If the leaf space is Hausdorff, then
every leaf has limit set the whole sphere and no leaf can be quasi-isometric. Hence
the topology of the foliation in the universal cover strongly influences geometric
properties.

Given this result, a natural question is: are there “generalized” foliations for
which the quasi-isometric question makes sense? In this article we will consider
singular foliations, where the singular set is a union of simple closed curves and near
the singular set the foliation is a product of an interval with a singular foliation
in the plane having a prong singularity. Examples are the stable and unstable
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foliations of a pseudo-Anosov flow in a 3-manifold [Mo1]. Roughly a pseudo-Anosov
flow is one that is locally like a suspension of a pseudo-Anosov homeomorphism of
a closed surface [Bl-Ca]. The first examples of quasi-isometric singular foliations
in closed, hyperbolic 3-manifolds were given by Cannon and Thurston [Ca-Th]
who proved that the suspension of a pseudo-Anosov homeomorphism of a closed
surface has stable/unstable singular foliations which are quasi-isometric. The quasi-
isometric property was the main tool used to produce examples of sphere filling
curves [Ca-Th]. This highlights the usefulness of finding quasi-isometric objects in
the foliation setting.

Therefore one asks: how common are quasi-isometric singular foliations? The
first goal of this article is to produce a large class of quasi-isometric singular foli-
ations in hyperbolic 3-manifolds by looking at pseudo-Anosov flows and their sta-
ble/unstable foliations. It is easy to prove that if the stable foliation of such a flow is
quasi-isometric that implies that the flow lines themselves are quasigeodesics [Fe3],
that is, when lifted to the universal cover they are uniformly efficient in measuring
distance. Consequently we look for quasigeodesic pseudo-Anosov flows. Recently
the author and Lee Mosher showed that if M3 is closed, oriented, hyperbolic and
with nonzero first Betti number, then M has a quasigeodesic pseudo-Anosov flow
[Fe-Mo]. The reader may notice this is the same class that has (nonsingular) finite
depth foliations in closed hyperbolic 3-manifolds, and this is not a coincidence since
the flows are obtained from the foliations and are “almost” transverse to these fo-
liations. This duality will be further explored in the second part of this article.
Given that the pseudo-Anosov flow is quasigeodesic, how far is it from proving that
the stable/unstable foliations are quasi-isometric? Not very far! The relationship
is explained in our first result:

Theorem A. Let Φ be a quasigeodesic pseudo-Anosov flow in M3 closed, hyper-
bolic. Let Fs be the stable foliation of Φ and F̃s its lift to the universal cover. Then
Fs is a quasi-isometric singular foliation if and only if F̃s has Hausdorff leaf space.

This result highlights the fundamental role that the topology of the leaf space
plays in understanding the geometry. One direction in Theorem A is very easy to
prove as was discussed previously. The importance of this result is that it exchanges
the verification of a geometric condition - which is usually extremely hard - and
replaces it with understanding a topological condition which is very simple and in
many cases possible to check, as explained below.

When does F̃s have Hausdorff leaf space? One is led to understand the topo-
logical theory of the stable/unstable foliations in the universal cover. Here the
important result is the same as for Anosov flows [Fe6]. We stress that in the next
result we do not assume that Φ is quasigeodesic or that M is hyperbolic.

Theorem B. Let Φ be a pseudo-Anosov flow in M3 closed. Let F,L ∈ F̃s which
are not separated from each other in the leaf space of F̃s. Then F,L are both left
invariant by a nontrivial covering translation g of M̃ . This produces a nontrivial
free homotopy between closed orbits of Φ in M .

In fact the proof gives more information concerning the local structure of F̃s

near a non-Hausdorff point. Regardless of geometric applications, Theorem B has
independent interest for the theory of pseudo-Anosov flows, for instance see another
application of Theorem B in [Fe7]. It follows from Theorem B that one way to obtain
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quasi-isometric singular foliations is to rule out freely homotopic closed orbits. In
this article we prove this is true for infinitely many examples:

Theorem C. There is a large class of examples of quasi-isometric singular folia-
tions in closed hyperbolic 3-manifolds, which are not obtained from suspensions of
pseudo-Anosov homeomorphisms.

The examples of Theorem C were obtained from pseudo-Anosov flows transverse
to depth one foliations, where it is easily checked that there are no freely homotopic
closed orbits and in addition they are quasigeodesic by the main result of [Fe-Mo].

We now explain the duality between finite depth foliations and pseudo-Anosov
flows. Given any transversely orientable foliation in a 3-manifold, a choice of a
continuous transverse vector field produces a transverse flow. In the case of Reebless
finite depth foliations one can find a dynamically “tight” representative in the
class of flows transverse to the foliation and is led to a pseudo-Anosov flow as
constructed by Mosher [Mo4]. Sometimes one has to consider flows which are
“almost” transverse to the foliation [Mo4]. This is a technical condition which
roughly means that, after blowing up a collection of singular orbits of the pseudo-
Anosov flow into a collection of annuli, one obtains a flow transverse to the foliation.
It is the property of the pseudo-Anosov flow being almost transverse to a finite depth
foliation which makes it possible to analyse its geometric behavior and prove that
it is quasigeodesic [Fe-Mo].

It is quite possible that all closed, oriented hyperbolic 3-manifolds with nonzero
first homology may admit pseudo-Anosov flows which satisfy the conditions of The-
orem A, and hence that any such manifold has singular quasi-isometric foliations.
Checking the condition of Theorem A depends on a very careful analysis of the in-
ductive step in Mosher’s construction [Mo4] of pseudo-Anosov flows using sutured
manifold hierarchies. We will analyse this in a future project.

If a (singular) foliation is quasi-isometric, then, in the universal cover, leaves
are boundedly near their tightest position. The relative position of an object with
respect to the leaves then tells us roughly where the object is in H3. This can give
precise information about asymptotic behavior of the object in H3 as explained
below.

The second goal of this article is to study the asymptotic behavior of (nonsin-
gular) Reebless finite depth foliations in hyperbolic 3-manifolds. This will use the
results obtained in the first part. Let G be such a foliation. Then G cannot be
quasi-isometric. On the other hand, the foliation G reflects the topology of M ex-
tremely well because it is directly associated to a hierarchy of M . Therefore it is of
interest to understand exactly how good its geometry can be, as related to that of
M̃ . One is led to analyse the continuous extension property: Each leaf of G admits
a hyperbolic metric quasiconformal with the Riemannian metric induced from the
manifold. Let F be a lift of such a leaf to M̃ = H3. Then the intrinsic metric in F
is isometric to the hyperbolic plane H2 and has a canonical compactification with a
circle at infinity ∂∞F . The continuous extension question is the following: does the
inclusion map ϕ : F → H3 extend to a continuous map ϕ : F ∪ ∂∞F → H3 ∪ S2

∞
for every F ∈ G̃? Notice that the continuous extension property is weaker than the
quasi-isometric property [Th2, Gr].

The continuous extension property was proved by Cannon and Thurston [Ca-Th]
for fibrations (= depth 0 foliations) and by the author for a large class of depth one
foliations in closed, hyperbolic 3-manifolds [Fe1]. The main idea was the following:
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Cannon and Thurston introduced a pseudometric in M which is quasi-isometric
to the hyperbolic metric when lifted to the universal cover. This means they are
boundedly related up to a multiplicative constant. In this pseudometric the stable
and unstable leaves (in the universal cover) are totally geodesic which implies they
are quasi-isometric in the original hyperbolic metric. This gives information about
asymptotic behavior of leaves of G̃. In [Fe1] we analysed the depth one case and
produced a pseudometric in the complement of the compact leaves so that leaves
of generalized stable/unstable laminations were totally geodesic and hence quasi-
isometric in the hyperbolic metric. The depth one case was much more involved
than the fibration case. The problem with this approach to study higher depth
foliations (depth ≥ 2) is that it strongly depends on the topological structure of
the foliation, which gets more and more complicated as the depth grows. In addition
the ideas above only apply to the components of top depth leaves (which fiber over
the circle with infinite genus fiber) and another prerequisite for this program to
work is that the lower depth leaves are quasi-isometric. For depth one foliation this
is true as lower depth leaves are compact and assumed not to be fibers of a fibration
over the circle. However it is easy to construct examples of higher depth foliations
where this requirement does not hold, presenting a further difficulty to the above
program.

We bypass all these problems by using Theorem C which gives us quasi-isometric
singular foliations not just in the top depth regions but in the whole manifold.
We then prove the continuous extension property for a large class of finite depth
foliations:

Theorem D. Let G be a Reebless finite depth foliation in a closed hyperbolic 3-
manifold M . Suppose that G is transverse to a quasigeodesic pseudo-Anosov flow
Φ and that the stable and unstable foliations of Φ are quasi-isometric singular foli-
ations. Let E be a leaf of G with hyperbolic metric quasiconformal with the induced
Riemannian metric from M . Let F be a lift to M̃ and ϕ : F → M̃ be the inclusion
map. Then ϕ extends to a continuous map ϕ : F ∪ ∂∞F → M̃ ∪ S2∞ and ϕ|∂∞F

gives a continuous parametrization of the limit set ΛF = ϕ(∂∞F ) of F . In addition
there is a large class of foliations satisfying the hypothesis of this theorem.

Here are the basic ideas in the proof of this theorem. We consider the unit ball
model for H3 ∪ S2∞ with the Euclidean metric induced from R3. Since F̃s and F̃u

are transverse to F they induce singular one-dimensional foliations F̃s
F , F̃u

F in F .
We first prove that each regular leaf of F̃s

F is a bounded distance from a geodesic
of F . A similar statement holds for singular leaves. Let p be a point in ∂∞F and
suppose first that p is not an ideal point of any leaf of F̃s

F , F̃u
F . One can then choose

li leaves of F̃s
F so that li union its ideal points in ∂∞F define a basis for the system

of neighborhoods of p in F ∪ ∂∞F . Let Li be the leaf of F̃s with li contained in
Li. If the Li escape compact sets in H3, then, because the Li are uniformly quasi-
isometric, it follows that the diameter of Li in the Euclidean metric of H3 ∪ S2

∞
(which is homeomorphic to a closed 3-ball) converges to 0 and hence it will define
a single ideal point which is ϕ(p). This is what happens when G is a fibration
or in the depth one cases analysed in [Fe1]. However, and this is a fundamental
point, in the general case it may be that the Li do not escape compact sets in H3

and the argument above is inconclusive. One is led to understand what else can
happen “beyond” F in the leaf spaces of F̃s, F̃u. More specifically since in general
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F does not intersect all leaves of F̃s, F̃u, what happens in the boundary of the set
of leaves of F̃s, F̃u intersected by F? Understanding the topological structure of
the pseudo-Anosov foliations F̃s, F̃u plays a fundamental role here. The other two
cases to consider are that p is an ideal point of a leaf of F̃s

F , F̃u
F or maybe of both.

This last option could not occur for depth 0 and depth 1 foliations. Such is not the
case here and it makes the analysis here more complex.

The nontrivial assumption in Theorem D is that Φ is transverse to G and not
just almost transverse. We stress that there are many examples where the pseudo-
Anosov flow Φ cannot be made transverse to G [Mo4]. However this is not a fatal
difficulty for we expect that Theorem D will still hold under the weaker almost
transverse hypothesis, even though the proof will be more complicated. This is also
left for a future project.

Finally we describe a more conjectural project. The quasi-isometric property
of singular foliations may be used to study the geometrical finiteness question for
π1-injective immersed surfaces as follows: Let Φ be a quasigeodesic pseudo-Anosov
flow in M3 closed hyperbolic and let R be an immersed, π1-injective surface in M .
Then R is a virtual fiber if and only if given a lift of R to M̃ its limit set is S2

∞ and
R is geometrically finite if and only if the limit set is a Jordan curve [Bo, Ma, Th2].
Put R in general position with respect to F̃s. It is possible that the induced singular
foliations in R may give information enough to decide whether R is geometrically
finite or not. This has been successfully done when R is in fact transverse to a
pseudo-Anosov flow by work of Cooper, Long and Reid [CLR1, CLR2] and also the
author [Fe7].

This article is organized as follows: In section 2 we review background material
on pseudo-Anosov flows. In section 3 we prove Theorem A. In the following section
we develop the topological theory of stable/unstable foliations of pseudo-Anosov
flows. In sections 5 and 6 we consider a finite depth foliation transverse to a pseudo-
Anosov flow and analyse topological and geometric properties of the singular 1-dim
foliations induced by Fu,Fs in leaves of G. This is used in section 7 to prove
Theorem D. Finally in section 8 we produce the examples mentioned in Theorems
C and D.

We thank the referee, who did an extremely careful reading of this article and
whose many suggestions, comments and corrections improved the presentation of
this article.

2. Pseudo-Anosov flows

Pseudo-Anosov flows are a generalization of suspension flows of pseudo-Anosov
surface homeomorphisms. These flows behave much like Anosov flows, but they
may have finitely many singular orbits which are periodic and have a prescribed
behavior. In order to define pseudo-Anosov flows, first we recall singularities of
pseudo-Anosov surface homeomorphisms.

Given n ≥ 2, the quadratic differential zn−2dz2 on the complex plane C (see [St]
for quadratic differentials) has a horizontal singular foliation fu with transverse
measure µu, and a vertical singular foliation fs with transverse measure µs. These
foliations have n-pronged singularities at the origin, and are regular and transverse
to each other at every other point of C. Given λ > 1, there is a homeomorphism
ψ : C → C which takes fu and fs to themselves, preserving the singular leaves,
stretching the leaves of fu and compressing the leaves of fs by the factor λ. Let Rθ
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be the homeomorphism z → e2πθz of C. If 0 ≤ k < n, the map Rk/n◦ψ has a unique
fixed point at the origin, and this defines the local model for a pseudohyperbolic
fixed point, with n-prongs and rotation k. This map is everywhere smooth except
at the origin. Let dE be the singular Euclidean metric on C associated to the
quadratic differential zn−2dz2, given by

d2
E = µ2

u + µ2
s.

Note that

(Rk/n ◦ ψ)∗d2
E = λ−2µ2

u + λ2µ2
s.

The mapping torus N = C × R/(z, r + 1) ∼ (Rk/n ◦ ψ(z), r) has a suspension
flow Ψ arising from the flow in the R direction on C ×R. The suspension of the
origin defines a periodic orbit γ in N , and we say that (N, γ) is the local model for a
pseudohyperbolic periodic orbit, with n prongs and with rotation k. The suspension
of the foliations f s, fu define 2-dimensional foliations on N , singular along γ, called
the local weak stable and unstable foliations.

Note that there is a singular Riemannian metric ds on C×R that is preserved
by the gluing homeomorphism (z, r + 1) ∼ (Rk/n ◦ ψ(z), r), given by the formula

ds2 = λ−2tµ2
u + λ2tµ2

s + dt2.

The metric ds descends to a metric on N denoted dsN .
Let Φ be a flow on a closed, oriented 3-manifold M . We say that Φ is a pseudo-

Anosov flow if the following are satisfied:
- For each x ∈ M , the flow line t → Φ(x, t) is C1, it is not a single point, and

the tangent vector bundle DtΦ is C0.
- There is a finite number of periodic orbits {γi}, called singular orbits, such that

the flow is smooth off of the singular orbits.
- Each singular orbit γi is locally modelled on a pseudohyperbolic periodic orbit.

More precisely, there exist n, k with n ≥ 3 and 0 ≤ k < n, such that if (N, γ)
is the local model for a pseudohyperbolic periodic orbit with n prongs and with
rotation k, then there are neighborhoods U of γ in N and Ui of γi in M , and a
diffeomorphism f : U → Ui, such that f takes orbits of the semiflow Rk/n ◦ ψ

∣∣ U
to orbits of Φ

∣∣ Ui.
- There exists a path metric dM on M , such that dM is a smooth Riemannian

metric off of the singular orbits, and for a neighborhood Ui of a singular orbit γi as
above, the derivative of the map f : (U − γ) → (Ui − γi) has bounded norm, where
the norm is measured using the metrics dsN on U and dM on Ui.

- On M −⋃
γi, there is a continuous splitting of the tangent bundle into three

1-dimensional line bundles Eu ⊕Es ⊕ TΦ, each invariant under DΦ, such that TΦ
is tangent to flow lines, and for some constants ν > 1, θ > 1 we have

1. if v ∈ Eu, then |DΦt(v)| ≤ θνt|v| for t < 0,
2. if v ∈ Es, then |DΦt(v)| ≤ θν−t|v| for t > 0,

where norms of tangent vectors are measured using the metric dM .
- In a neighborhood Ui of a singular orbit γi as above, Df(Es) is tangent to the

local weak stable foliation and similarly for Df(Eu).
With this definition, pseudo-Anosov flows are a generalization of Anosov flows

in 3-manifolds [An, An-Si]. The entire theory of Anosov flows can be mimicked for
pseudo-Anosov flows [Mo4]. In particular, a pseudo-Anosov flow Φ has a singular
2-dimensional weak unstable foliation Fu which is tangent to Eu ⊕ TΦ away from
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Figure 1. (a) Non-Hausdorff behavior in the leaf space of F̃s:
(a1) F,L nonseparated from each other, as seen in M̃ , (a2) the
corresponding picture in the leaf space H(F̃s). (b) A singular leaf
of F̃s: (b1) as seen in M̃ , (b2) as seen in H(F̃s).

the singular orbits. A complete leaf of this foliation is called a regular leaf of Fu.
A noncomplete leaf can be completed by adding a singular orbit α. The union of
α and the noncomplete leaves abutting α forms a singular leaf of Fu containing
α. Similarly there is a 2-dimensional weak stable foliation Fs tangent to Es ⊕ TΦ.
These foliations are singular along the singular orbits of Φ, and regular everywhere
else. In the neighborhood Ui of an n-pronged singular orbit γi, the images of Fs and
Fu in the model manifold N are identical with the local weak stable and unstable
foliations.

The pseudo-Anosov flow also has singular 1-dimensional strong foliations Fss,
Fuu. Outside the singular orbits, leaves of Fss are obtained by integrating Es. If
x ∈ α and α is a singular orbit of Φ, then, in the local model N = C × R/ ∼,
the point x corresponds to (O, t), where O is the origin in C. Then W ss

loc(x) is
ζ × {t}, where ζ is the singular leaf of f s (which contains O). The {W ss

loc(x)}, x
in singular orbit, glue up with the leaves of Fss outside singular orbits to form a
singular foliation Fss. The foliation Fss is flow invariant, that is, for any leaf ζ1 of
Fss and any real t, Φt(ζ1) is a leaf of Fss. Furthermore for t > 0 Φt exponentially
contracts distances along leaves of Fss. Similarly for Fuu.

Notation/definition. The discussion above applies equally well to the lifted singu-
lar foliations F̃s, F̃u, F̃ss, F̃uu in M̃ . If x ∈ M let W s(x) denote the leaf of Fs

containing x. Similarly one defines Wu(x),W ss(x),Wuu(x) and in the universal
cover W̃ s(x), W̃u(x), W̃ ss(x), W̃uu(x). Similarly if α is an orbit of Φ define W s(α),
etc. Also let Φ̃ be the lifted flow to M̃ .

In Figure 1 we highlight the difference between non-Hausdorff behavior in the
leaf space of F̃s and the splitting (or branching) of leaves associated to singular
orbits of Φ̃. In part (a) the leaves F,L of F̃s are not separated from each other in
the leaf space of F̃s. Notice that the sequence Fi converges to F and L. In Figure
1 part (b) we sketch a singular leaf S with 3 prongs. Even though S separates M̃
into 3 or more regions, non-Hausdorffness is not involved. The leaves Si converge



FOLIATIONS WITH GOOD GEOMETRY 627

only to S. In this article, unless otherwise specified, all pictures of leaves of F̃s, F̃u

will describe them as subsets of M̃ , rather than in the leaf space of F̃s.
We need to understand the intrinsic geometry of a leaf L of F̃s. All results apply

equally well to F̃u. We start by reparametrizing the flow to have constant speed 1.
Using the local model near singularities we may assume this was already true near
the singular orbits. The resulting flow is still a pseudo-Anosov flow with the same
weak stable and unstable foliations [An-Si], so we may assume it is the original
flow.

There is a stable lamination associated to the flow Φ. Each singular leaf of
Fs can be split up into a union of finitely many nonsingular leaves by blowing
up the singularity, much like blowing air to inflate the leaves. If α is a p-prong
singular orbit of Φ, then one sees p local leaves of W s(α) − α abutting α. The
blow up operation will turn this into p local stable leaves. This produces a stable
lamination Λs. There is an induced flow tangent to leaves of Λs. Let Λ̃s be the lift
of Λs to M̃ .

The leaves of Λ̃s are negatively curved in the large, as defined by Gromov [Gr]
who used the term hyperbolic. Notice first that there is no holonomy invariant
transverse measure to Λs - because near the periodic orbits of Φ there is expanding
holonomy. Using this Plante [Pl] proved that all leaves of Λs have exponential
growth and Sullivan [Su] showed that leaves of Λ̃s are uniformly hyperbolic in the
Gromov sense. This immediately implies that the same is true for regular leaves of
F̃s and we will prove the same for singular leaves. First we define quasi-isometries
and standard leaves.

Definition 2.1. A quasi-isometric embedding is a map φ : (M,d) → (M ′, d′) be-
tween metric spaces for which there is k ≥ 1 so that, for any x, y ∈M ,

1
k
d(x, y) − k ≤ d(φ(x), φ(y)) ≤ kd(x, y) + k.

In addition φ is a quasi-isometry if every y ∈M ′ is a bounded distance from φ(M).
Two metrics (M,d), (M,d′) in M are quasi-isometric if id : (M,d) → (M,d′) is a
quasi-isometry.

Definition 2.2. Let L ∈ F̃s. A standard leaf of L determined by orbit β of Φ̃ in
L is S = S′ ∪β, where S′ is a component of L−β. If L is singular we only consider
β to be the singular orbit in L. Similarly for G ∈ F̃u.

Let L be a leaf of F̃s. The Riemannian metric in M̃ induces Riemannian metrics
ds in each of the standard leaves of L. These glue together to produce a singular
Riemannian metric ds in L. Let d be the metric which is its path integral: if
x, y ∈ L, then d(x, y) = inf{l(γ) | γ}, where the infimum is taken over all rectifiable
paths γ from x to y in L. When L is regular ds is just the induced Riemannian
metric from M̃ .

In any standard leaf S in a leaf L of F̃s there is a foliation (vertical) by flow lines
and another (horizontal) by leaves of the strong stable foliation. Let dw (dt) be
the length along the strong stable (flow) direction. Define the infinitesimal metric
ds′ = dw + dy in L. Notice that ds′ is only a Finsler metric. However lengths of
paths can still be computed. Glueing this along all standard leaves of L produces
a singular Finsler metric ds′ in S. Let d′ be its path integral.
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With this background, then exactly as in [Fe3] it follows that: There is k1 > 0 so
that for any leaf L in F̃s (or for any standard leaf of F̃s or any leaf of Λ̃s), then d
and d′ are k1-quasi-isometric metrics in L. To study the large scale geometry of L
we will use the metric d′ which has more obvious properties. When the dependence
upon L is important the metrics will be denoted by dL, d

′
L.

A fundamental fact is that for L ∈ F̃s (or line leaf of F̃s or leaf in Λ̃s), then
any orbit β of Φ̃ in L is a minimal geodesic in the d′ metric: if x, y ∈ β are a flow
distance |∆t|, then any path from x to y in L has to cover at least that much |∆t|.
This is because L has a global product structure by leaves of F̃ss and flow lines of
Φ̃, and the measure dt is holonomy invariant under leaves of F̃ss in L.

Standard leaves in F̃s correspond to standard leaves of Λ̃s. Using this and the
fact that any orbit β is a minimal geodesic in the d′ metric, it follows that leaves of
F̃s are also negatively curved in the large and have an associated ideal boundary.

We can now directly apply the analysis of [Fe3], section 5, to obtain the following:

Lemma 2.3. If R is a standard leaf of F̃s bounded by a flow line α of Φ̃, then
its ideal boundary ∂∞R is a closed segment. The ideal points correspond to the
common forward limit point of all flow lines and in addition a negative ideal limit
point for each flow line. The boundary points of the segment ∂∞R are the forward
and backwards ideal point of α. Finally if αi, i ∈ N, are orbits of Φ̃ in R which
escape every compact set in R, then their negative ideal points converge to the
positive ideal point of R.

Now we can understand the intrinsic geometry of full leaves of F̃s. If L ∈ F̃s

is regular, then it is obtained by identifying two standard leaves of F̃s along their
common boundary. Intuitively the geometric model for L is the hyperbolic plane
H2, where the flow lines in L correspond to all oriented geodesics of H2 having the
same positive limit point in the ideal boundary ∂H2. Then ∂∞L is homeomorphic
to a circle. On the other hand if L has a p-prong singular orbit β, then L is the
union of p standard leaves of F̃s along β. Then ∂∞L is a union of p closed segments
which have the forward ideal points of β in the different standard leaves identified
to a single point, and the same for the backward ideal points of β. Equivalently
∂∞L is homotopic to a bouquet of p− 1 circles.

3. Quasi-isometric singular foliations in hyperbolic 3-manifolds

The purpose of this section is to establish a strong relationship between the
geometry and the topology of the stable foliation F̃s of a quasigeodesic pseudo-
Anosov flow in M3 hyperbolic. Our goal is to show that Fs is quasi-isometric if
and only if the leaf space of F̃s is Hausdorff. We first define piece leaves in leaves
of F̃s, F̃u.

Definition 3.1. A piece leaf of a leaf Z ∈ F̃s is L = L1 ∪α∪L2, where L1, L2 are
distinct standard leaves of Z glued along α. If L is regular, then L itself is its only
piece leaf. If L has p-prongs, then it has p(p− 1)/2 piece leaves.

When α is regular, there are no singular orbits in the piece leaf L, so there is
a stable bundle Es induced in L. If on the other hand α is a singular orbit, then
because of the local model in a neighborhood of α, there are strong stable directions
in both of the sides of α in L and the directions define the same slope in L along
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Figure 2. Paths “flow, strong stable and flow” which efficiently
measure distance in L.

α. Hence for any piece leaf L of F̃s there is an induced continuous bundle Es in
the entire piece leaf L and for any v ∈ Es (in L) then |DΦ̃t(v)| ≤ θν−t|v| for any
t > 0.

First we need a lemma. Let L be a piece leaf of F̃s. Then Φ̃ and F̃ss induce
foliations in L. Identify L to R2 as follows: fix z ∈ L, which will be the origin
of R2. Flow lines are vertical lines in R2. Leaves of F̃ss are horizontal lines,
where we identify W̃ ss(z) with its induced path metric to R. Any point u in L is
uniquely described as (w, t) ∈ R2, where (w, 0) ∈ R2 is identified to y ∈ W̃ ss(z)
and u = Φ̃t(y). Recall the infinitesimal metrics ds and ds′ in L as well as their
path integrals d and d′. Let l′ be the length of a path in the ds′ metric.

We denote by d the ambient metric in M or M̃ .

Lemma 3.2. There are constants a0, a1 > 0 so that: For any piece leaf L in a leaf
of F̃s and any x, y ∈ L, there is a path γ in L from x to y with γ = α0 ∗ α1 ∗ α2

and
- α0 starts at x, α2 ends in y,
- α0 ⊂ Φ̃[0,+∞)(x), α2 ⊂ Φ̃[0,+∞)(y),
- α1 is contained in a leaf of F̃ss,
- l′(α1) ≤ a1 and
- l′(γ) < a0d

′(x, y).
This means that there are paths of type flow segment forwards, strong stable and
then flow segment backwards which are uniformly efficient in measuring length in
L.

Proof. Let γ0 be a minimal geodesic from x to y in the d′ metric. As Φ̃R(x), Φ̃R(y)
are minimal geodesics in the d′ metric of L, it follows that γ0 is contained in the
region of L bounded by these flow lines; see Figure 2.

Under the identification L ∼= R2 we have

γ0 : [0, b] → R2, γ(τ) = (w(τ), t(τ)).

Let τ ′ ∈ [0, b] so that t(τ ′) = max{t(τ) | τ ∈ [0, b]}. Let
- α0 be the segment in Φ̃R(x) from x = (w(0), t(0)) to x1 = (w(0), t(τ ′)),
- α1 the segment in W̃ ss(x1) from x1 to y1 = (w(b), t(τ ′)) and
- α2 the segment in Φ̃R(y) from y1 to y = (w(b), t(b)) - notice that α2 moves

in the direction opposite to the flow Φ̃.
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Finally let γ = α0 ∗ α1 ∗ α2. Recall that

ds′ = dw + dt and l′(γ0) =
∫

γ0

(dw + dt).

Since γ0 goes from height t(0) (at x) to height t(τ ′) and then back to height t(b)
(at y), then∫

γ0

dt ≥ (t(τ ′)− t(0)) + (t(τ ′)− t(b)) = l′(α0) + l′(α2).

Since t ≤ t(τ ′) in γ0, push γ0 forward along flow lines of Φ̃ to height t(τ ′). This
destroys the dt component of ds′ and since the change in t is always positive, it
expands the dw part by at most θ, where θ was in the definition of the pseudo-
Anosov flow. But the push forward of γ0 contains α1 so we get l′(α1) ≤ θ

∫
γ0
dw.

Therefore

l′(γ) = l′(α0) + l′(α1) + l′(α2) ≤
∫

γ0

dt + θ

∫
γ0

dw ≤ θ

∫
γ0

ds′ = θd′(x, y).

The proof will be finished by showing that l′(α1) is bounded. In the same way
as above we can push forward α1 by ∆t along flow lines of Φ̃ and obtain a path α3

which is homotopic to α1 and consists of a flow segment followed by a segment in
a leaf of F̃ss and another flow segment. By a similar argument as above:

l′(α3) ≤ 2∆t+ θν−∆tl′(α1) ≤ 2∆t+ θ2ν−∆t

∫
γ0

dw.

By minimality of γ0 it follows that∫
γ0

ds′ ≤ l′(α0) + l′(α3) + l′(α2) ≤
∫

γ0

dt+ l′(α3).

Therefore ∫
γ0

dw ≤ l′(α3) ≤ 2∆t+ θ2ν−∆t

∫
γ0

dw, ∀ ∆t ≥ 0.

Hence
∫

γ0
dw is bounded above and consequently l′(α1) is also bounded above. This

finishes the proof of the lemma.

At this point we need to define the quasigeodesic property:

Definition 3.3. A quasigeodesic curve in a metric space (M,d) is the projection
to M of a quasi-isometry φ : I → M̃ , where I is an interval in R which may be
bounded, infinite or bi-infinite. The metric in I is the induced Euclidean metric. If
M is compact, being quasigeodesic is independent of the choice of smooth metric
in M . Once a metric is fixed, we say that α is a k-quasigeodesic if it is the image
of a k-quasi-isometry. A flow for which all the flow lines are quasigeodesics is a
quasigeodesic flow.

For the rest of this section we restrict to M3 closed, with negatively curved
fundamental group [Gr, Gh-Ha, CDP]. This was also defined by Gromov who
again used the term hyperbolic [Gr]. Examples are manifolds of negative sectional
curvature, therefore including all hyperbolic 3-manifolds. This property implies
that Z⊕Z does not inject in π1(M) [Gr], [Gh-Ha], thereforeM is atoroidal. Gromov
[Gr] showed that M̃ is compactified with an ideal boundary ∂M̃ . Bestvina and Mess
[Be-Me] proved that ∂M̃ is homeomorphic to a 2-dimensional sphere, which will
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be denoted by S2
∞. They also showed that M̃ ∪ S2

∞ is homeomorphic to the closed
3-ball B3. Given a k-quasigeodesic in M , any lift to M̃ is a bounded distance from
a minimal geodesic [Gr, Gh-Ha, CDP]. The bound depends only on k and how
much π1(M) is negatively curved. It follows that any quasigeodesic in M̃ has 2
well-defined distinct ideal points in S2

∞ [Gr].
Now let Φ be a quasigeodesic pseudo-Anosov flow in M3 with negatively curved

π1(M). Given x ∈ M̃ , Φ̃R(x) is a quasigeodesic in M̃ . This defines functions

η+, η− : M̃ → S2
∞, η+(x) = lim

t→+∞ Φ̃t(x), η−(x) = lim
t→−∞ Φ̃t(x).

Any pseudo-Anosov flow in an atoroidal 3-manifold is transitive [Mo2]. Conse-
quently orbits of Φ are uniformly quasigeodesic (that is, the same k can be used
for all flow lines). This implies that η+, η− are continuous functions [Fe3]. In fact
the next result says that leaves of F̃s extend continuously to the sphere at infinity.

Theorem 3.4. Suppose Φ is a quasigeodesic pseudo-Anosov flow in a 3-manifold
M with π1(M) negatively curved. Let L be a leaf of F̃s. Then the embedding
ξ : L→ M̃ extends continuously to ξ : L ∪ ∂∞L→ M̃ ∪ S2∞.

Proof. If β is an orbit of Φ̃ in L, then β is a minimal geodesic in the d′ metric of
L. Therefore it suffices to consider standard leaves of L to prove this result. With
this in mind the proof is exactly the same as in Theorem 5.8 of [Fe3].

Now we define a quasi-isometric singular foliation.

Definition 3.5. We say that the foliation Fs in M is quasi-isometric if there is
k > 0 so that

∀L ∈ F̃s, ∀x, y ∈ L, dL(x, y) < kd
M̃

(x, y) + k.

Similarly for Fu. The property of M being hyperbolic is not needed for this
definition.

In order to prove Theorem A of the introduction we start with a quasigeodesic
pseudo-Anosov flow in M3 closed, hyperbolic and first relate the quasi-isometric
property for Fs with the continuous extension property for leaves of F̃s. For sim-
plicity we consider M hyperbolic. Analogous proofs work when π1(M) is negatively
curved in the large.

Theorem 3.6. Let Φ be a quasigeodesic pseudo-Anosov flow in M3 closed, hyper-
bolic. Let Fs be the singular stable foliation of Φ. Then Fs is a quasi-isometric
foliation if and only if, for each leaf L ∈ F̃s, the extension L∪ ∂∞L→ H3 ∪ S2∞ is
injective, that is, the map between ideal boundaries ∂∞L→ S2

∞ is a homeomorphism
onto its image.

Proof. Suppose first that Fs is quasi-isometric and let L be a leaf of the foliation
F̃s. Let ξ : L →M be the inclusion and ξ : L ∪ ∂∞L → M̃ ∪ S2

∞ the extension to
the ideal compactifications given by Theorem 3.4. Since L and M̃ are negatively
curved in the large as defined by Gromov and ξ : L → M̃ is a quasi-isometric
embedding, then Theorem 7.2 of [Gr] implies that ξ is injective.

Suppose now that ξ : L ∪ ∂∞L → M̃ ∪ S2∞ is injective for all L ∈ F̃s. Fix k0

so that all flow lines of Φ are k0-quasigeodesics. Recall that dL, d
′
L are uniformly

quasi-isometric to each other in leaves or piece leaves L of F̃s. It is simpler to use
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Figure 3. (a) Convergence of good paths in leaves. (b) Conver-
gence in the sphere at infinity.

the d′L metric. Suppose that F̃s is not quasi-isometric. Then there are leaves Vn of
F̃s and xn, yn ∈ Vn so that

d′Vn
(xn, yn) > nd(xn, yn) + n, ∀n ∈ N.(∗)

Let Ln be piece leaves of Vn with xn, yn ∈ Ln. The previous lemma produces paths

γn ⊂ Ln, γn = α0
n ∗ α1

n ∗ α2
n, with α0

n ⊂ Φ̃(−∞,0](xn), α2
n ⊂ Φ̃(−∞,0](yn)

and α1
n contained in a leaf of F̃ss. In addition

l′(α1
n) ≤ a1 and l′(γn) ≤ a0d

′
Ln

(xn, yn).

Up to subsequence assume that l′(α0
n) or l′(α2

n) is bounded, say the second option.
The arc α0

n is in a flow line of Φ̃, hence is k0-quasigeodesic. Since γn is the union
of α1

n ∗ α2
n of bounded length and α0

n, it follows that γn is uniformly quasigeodesic
(with a different constant) and d′Ln

(xn, yn) is bounded above by a constant times
d(xn, yn). This contradicts the hypothesis.

We may now assume that l′(α0
n), l′(α2

n) → +∞ as n→∞. Given this we can also
assume that l′(α1

n) is bounded below, for otherwise we may save a lot of l′ length
by flowing α1

n backwards. Since l′(α1
n) is bounded above and below we may assume

up to taking a subsequence that π(α1
n) converges to a segment of positive length in

a (possibly singular) leaf of Fss. Up to taking covering translations of M̃ , we may
assume that the α1

n themselves converge to a segment [u, r] of positive length in a
leaf of F̃ss. Then α0

n converges to Φ̃(−∞,0](u) and α2
n converges to Φ̃(−∞,0](r).

Let un be the endpoint of α0
n, rn the starting point of α2

n, so un → u, rn → r.
Let βn be the geodesic arc of H3 connecting xn, yn, and let vn ∈ βn be the closest
point to un; see Figure 3 (a).

Suppose first that d(un, vn) does not converge to +∞. Therefore up to subse-
quence assume that d(un, vn) ≤ a2. Notice that d(xn, yn) = d(xn, vn) + d(vn, yn).
Since flow lines of Φ̃ are k0 quasigeodesics, then

l′(α2
n) ≤ k0d(rn, yn) + k0, l′(α0

n) ≤ k0d(xn, un) + k0.

In addition

d(un, rn) ≤ l′(α1
n) ≤ a1, d(rn, yn) ≤ d(rn, un) + d(un, yn).
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Therefore

l′(α1
n ∗ α2

n) ≤ a1 + k0d(rn, yn) + k0 ≤ a1 + k0d(un, yn) + k0a1 + k0.

Consequently

d′Ln
(xn, yn) ≤ l′(γn) = l′(α0

n) + l′(α1
n ∗ α2

n)

≤ k0d(xn, un) + k0 + k0d(un, yn) + k0a1 + k0 + a1

= k0(d(xn, un) + d(un, yn)) + k0(2 + a1) + a1

≤ k0d(xn, yn) + 2k0d(un, vn) + k0(2 + a1) + a1

≤ k0d(xn, yn) + k0(2a2 + 2 + a1) + a1.

This contradicts the hypothesis (*). We conclude that d(un, vn) → +∞.

Claim. xn → η−(u), yn → η−(r) in M̃ ∪ S2∞ as n→∞.

We prove this for xn. Consider the unit ball model for H3 with compactifica-
tion M̃ ∪ S2

∞ homeomorphic to a closed ball in Euclidean space. Let de be the
Euclidean metric in this closed ball. Let ζn be the geodesic of H3 with endpoints
η+(xn), η−(xn), and let ζ be the geodesic of H3 with endpoints η+(u), η−(u). Since
xn = Φ̃tn(un), un → u as n → +∞ and η−, η+ are continuous, it follows that
ζn → ζ.

Fix ε > 0. Let Uε be the de-neighborhood of η−(u) in M̃ ∪ S2∞ with radius ε.
There is n0 so that for n > n0 then η−(xn) ∈ Uε, so ζn has a ray contained in
Uε; see Figure 3 (b). Since Φ̃R(xn) is a uniformly bounded distance from ζn, then
Φ̃R(xn) also has a ray contained in Uε. In fact more is true: because flow lines of
Φ are uniform k0-quasigeodesics, then orthogonal projection of a flow line of Φ̃ to
the geodesic with same ideal points is a k1-quasi-isometry, where the k1 depends
only on k0 [Th2, Gr]. Also distance between points and their images is uniformly
bounded. Using this and the fact that un → u, it follows that there is

n0 ∈ N, t0 < 0, so that ∀n > n0, t < t0, then Φ̃t(un) ∈ Uε;

see Figure 3 (b). Since xn = Φ̃tn(un) and tn → −∞, it follows that xn ∈ Uε, for n
big enough; see Figure 3 (b). This proves the claim.

Consequently βn are geodesic arcs whose endpoints xn, yn converge to η−(u),
η−(r). If η−(u) 6= η−(r), then they define a geodesic β of H3 and βn → β, con-
tradicting d(un, βn) → +∞. Hence η−(u) = η−(r). As [u, r] has positive length,
then u, r are not in the same orbit of Φ̃ in C = W̃ s(u). Let u−, r− ∈ ∂∞C be the
negative ideal points of Φ̃R(u), Φ̃R(r) as seen in C ∪ ∂∞C. Since u and r are not
in the same flow line of Φ̃, then u− 6= r−. But

ξ(u−) = η−(u) = η−(r) = ξ(r−),

contradicting the fact that ξ : C ∪ ∂∞C → M̃ ∪ S2∞ is injective. This finishes the
proof of Theorem 3.6.

We now define sectors and line leaves, which will be used throughout the article.
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Figure 4. The sets associated to a leaf F of F̃s: F1, F2, F3 are
standard leaves, V is a sector of F . Then F1∪F2 = ∂V is a line leaf
of F and so is F2∪F3. Also F1∪F3 is a piece leaf of F which is not
a line leaf since it has prongs of F on each side. Each component
of F − γ is a half leaf of F .

Definition 3.7. The sectors defined by L ∈ F̃s are the components of M̃ − L. A
line leaf of L ∈ F̃s is the boundary of a sector of L. Notice that it is a piece leaf of
L, but if L is a singular leaf with 4 or more standard leaves, then there are many
piece leaves of L which are not line leaves. If L has a p-prong singular orbit, then
L has p line leaves.

Figure 4 illustrates all these concepts in a leaf F of F̃s. We stress in the case of a
regular leaf that the following simplifications occur: line leaves are the same as piece
leaves and also half leaves are the same as standard leaves (modulo the boundary
orbit). Half leaves are formally defined in the beginning of the next section.

Recall the stable lamination Λs. Its complementary regions are solid tori or solid
Klein bottles, hence Λs is an essential lamination [Ga-Oe]. It follows that any piece
leaf of F̃s separates in M̃ .

Given B ⊂ H3, its limit set is IB = B ∩ S2∞, the closure taken in M̃ ∪ S2∞.
We will now prove Theorem A of the introduction.

Theorem 3.8. Let Φ be a quasigeodesic pseudo-Anosov flow in M3 closed, hyper-
bolic. Let Fs be the singular stable foliation of Φ. Then Fs is a quasi-isometric
singular foliation if and only if F̃s has Hausdorff leaf space.

Proof. One direction is very simple and the other uses the previous theorem.
First suppose that the leaf space of F̃s is not Hausdorff. There are F 6= L ∈ F̃s

and Fn ∈ F̃s with Fn → F ∪ L in the leaf space of F̃s. Let c ∈ F and e ∈ L
and let cn, en ∈ Fn with cn → c and en → e. Then d(cn, en) → d(c, e) so d(cn, en)
is bounded. If dFn(cn, en) has a bounded subsequence we may assume that it is
bounded. Hence there is a4 > 0 so that for all n, en ∈ BFn

a4
(cn) = the ball of radius

a4 in the dFn metric of Fn.
Here we use the fact that if cn → c, with cn ∈ Fn ∈ F̃s and c ∈ F ∈ F̃s, then

BFn
a4

(cn) → Z as n→∞, where Z ⊂ BF
a4

(c)

in the Gromov-Hausdorff topology of closed sets of M̃ . The reason is the following:
if F is not singular, then BF

a4
(c) has a small product foliated neighborhood and

BFn
a4

(cn) actually converges to BF
a4

(c). On the other hand if F is singular, then up
to taking a subsequence of the cn it follows that either all cn are in F , in which
case W = BF

a4
(c) again, or the cn are all in one sector V of F . In this last case

BFn
a4

(cn) → BF ′
a4

(c), where F ′ is the line leaf of F which is the boundary of V .
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Figure 5. (a) Producing points on line leaves of L with same
negative ideal points. (b) Impossible configuration of convergence.

As a consequence of this fact, since en ∈ BFn
a4

(cn), we conclude that e ∈ BF
a4

(c) ⊂
F , contradicting F 6= L. This proves one implication of the theorem.

Assume now that Fs is not a quasi-isometric singular foliation. By the previous
theorem there is L ∈ F̃s and x, y ∈ L, not in the same orbit of Φ̃ in L and so that
η−(x) = η−(y). First we claim that we can assume that x, y are in a line leaf of L.
Suppose then that x and y are not contained in a line leaf of L; see Figure 5 (a).
This implies that L is a singular leaf with 4 or more standard leaves. There is a
piece leaf L1 of L which separates x from y, that is, separates Φ̃R(x) from Φ̃R(y) in
M̃ . In addition we can choose L1 so that the two standard leaves L0

1, L
1
1 of L1 are

part of line leaves of L which also contain y; see Figure 5 (a). As η−(x) = η−(y)
and L1 separates Φ̃R(x) from Φ̃R(y) in M̃ , it follows that η−(x) is in IL1 , the limit
set of L1.

Let ξ : L1 ∪ ∂∞L1 → M̃ ∪S2
∞ be the extension of ξ : L1 → M̃ . By Theorem 3.4,

IL1 = ξ(∂∞L1). Let c0 ∈ ∂∞L1 with ξ(c0) = η−(y). By Lemma 2.3, we can choose
z ∈ L1 with either

η−(z) = ξ(c0) = η−(y) or η+(z) = ξ(c0) = η−(y).

Suppose first that η+(z) = η−(y). As z, y ∈ L ∈ F̃s, then η+(z) = η+(y). But
then η+(y) = η−(y), a contradiction to Φ̃R(y) being quasigeodesic. Therefore
η−(z) = η−(y). Suppose that z ∈ L0

1. Then z, y are in a line leaf L2 of L. L2 is the
union of L

0

1 and the standard leaf of L containing y. This proves the claim.
By moving z, y slightly along their unstable leaves into the sector of L defined

by L2 we find z1 ∈ W̃u(z), y1 ∈ W̃u(y) ∩ W̃ s(z1) and W̃ s(z1) regular. Notice that

η−(z1) = η−(z) = η−(y) = η−(y1)

and z1, y1 are not in the same orbit in W̃ s(z1). We may further assume that
y1 ∈ W̃ ss(z1).

Let vn = Φ̃tn(z1) with tn → −∞, hence vn → η−(z1). As η−(z1) = η−(y1),
then Φ̃R(z1), Φ̃R(y1) are quasigeodesics of H3 with same ideal points, and there
are sn → −∞ so that un = Φ̃sn(y1) satisfies d(vn, un) is bounded.

Assume up to taking a subsequence that π(vn) converges to b0 ∈ M . There
are covering translations gn ∈ π1(M) with gn(vn) → v and π(v) = b0. As
d(gn(vn), gn(un)) is bounded, assume up to taking a further subsequence, that
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gn(un) also converges to u ∈ M̃ . Let Fn = gn(W̃ s(z1)). Notice that d(vn, un) is
bounded below by a positive constant, because tn, sn → −∞, so in Fn, dFn(un, vn)
→ +∞. Therefore u 6= v.

Suppose that u and v are in the same stable leaf F . We first claim that u and v
cannot be separated by a piece leaf F ′ of F ; see Figure 5 (b). Otherwise F ′ would
separate un from vn for n big, a contradiction to un, vn ∈ Fn and un → u, vn → v.
Let γ be a path in F from u to v. Since Fn → F and no piece leaf of F separates
u from v, it follows that there are paths γn in Fn from gn(un) to gn(vn) which
are converging to γ. This implies that l(γn) is bounded above and consequently
dFn(vn, un) is bounded, a contradiction to the above. Hence u and v are not in the
same leaf of F̃s and F̃s does not have Hausdorff leaf space. This finishes the proof
of Theorem 3.8.

Remark. The property Fs quasi-isometric implies that Φ is quasigeodesic: Let β
be a flow line of Φ̃ and β ⊂ L ∈ F̃s. Then β is a minimal geodesic in the d′L metric
of L, that is, length along β measures length in L. The quasi-isometric property
for L then immediately implies that β is a quasigeodesic in M̃ .

4. Topological theory of pseudo-Anosov flows

We showed in the previous section that if Φ is a quasigeodesic pseudo-Anosov
flow in M3 hyperbolic, then important geometric questions for F̃s fundamentally
depend on the topology of the leaf space of F̃s. When we want to think of this
leaf space as a topological space we use the notation H(F̃s). Then H(F̃s) is a 1-
dimensional object which is not Hausdorff when there are leaves of F̃s nonseparated
from other leaves (in H(F̃s)). Also H(F̃s) is not a manifold if Φ is really singular
pseudo-Anosov (as opposed to being an Anosov flow). Then each p-prong leaf of
F̃s gives rise to a p-prong in H(F̃s). A leaf F of F̃s can be thought of as a subset
of M̃ , that is, the union of the points of M̃ which are in the leaf F ; or as a point
in H(F̃s).

In this section we study the structure of the non-Hausdorff points in H(F̃s). For
starters we stress that the analysis will be done in a completely general setting: we
will not assume that Φ is quasigeodesic or that M is hyperbolic. The study of non-
Hausdorff points in H(F̃s) was done in [Fe6] for general Anosov flows. Much of the
analysis is very similar and we will refer to [Fe4, Fe5, Fe6] whenever possible. The
main difficulty is to show that even though F̃s is a singular foliation, its singularities
do not interfere with the analysis of the non-Hausdorff points of H(F̃s). Regardless
of geometric applications, the results of this section are of independent interest for
the theory of pseudo-Anosov flows.

In [Fe6] a non-Hausdorff point ofH(F̃s) was called a branching point, and F,L ∈
F̃s was called a branching pair of F̃s if F is not separated from L as seen in H(F̃s).
In the case of pseudo-Anosov flows, a singular leaf L ∈ F̃s also produces some sort of
branching in the leaf space H(F̃s) - this is not associated to non-Hausdorff behavior
in H(F̃s). For this reason we do not find it appropriate to use the term branching
leaves for the non-Hausdorff points of H(F̃s) in the case of pseudo-Anosov flows.

The following facts and definitions will be needed here and in later sections.
We proved in [Fe-Mo] that the orbit space of Φ̃ in M̃ is homeomorphic to the
plane R2. This orbit space is denoted by O ∼= M̃/Φ̃. Let Θ : M̃ → O ∼= R2 be
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the projection map. As the foliations F̃s, F̃u are invariant under Φ̃, they induce
singular, transverse 1-dim foliations F̃s

O, F̃u
O in O. The singular points of F̃u

O are
the same as those of F̃s

O. If L is a leaf of F̃s or F̃u, then Θ(L) ⊂ O is a tree which
is either homeomorphic to R if L is regular, or is a union of p-rays all with the
same starting point if L has a singular p-prong orbit. In particular every orbit in
L disconnects L.

Definition 4.1. Let L be a leaf of F̃s or a line leaf or a piece leaf of a leaf of F̃s.
Then a half leaf of L is a connected component A of L−γ, where γ is any full orbit
in L. The closed half leaf is A = A ∪ γ and its boundary is ∂A = γ. If ζ is an
open, relatively compact, connected subset of Θ(L), then it defines a flow band L1

of L by L1 = Θ−1(ζ). Let L1 be the closure of L1 in M̃ . If ζ is an open segment
in Θ(L), then Θ−1(ζ) is called a segment flow band of L.

One difference from the case of Anosov flows is that even in the universal cover,
the stable and unstable foliations may not be transversely orientable. In fact the
foliations in the universal cover will be transversely orientable if and only if all
singular orbits have an even number of prongs. For Anosov flows, much of the
analysis in [Fe5, Fe6] was coached using the transversal orientations to F̃s, F̃u and
given L ∈ F̃s, referring to the positive/negative sides of L in M̃ . Here this will not
be possible. Nevertheless any leaf L in F̃s or F̃u separates M̃ and we will use the
connected components of M̃ − L, which are the sectors of L.

Here are two easy but important facts. First if F ∈ F̃s and G ∈ F̃u, then F
and G intersect in at most one orbit. This is a consequence of index computations
for foliations in the plane as follows. Project to O and suppose that there are
a 6= b in Θ(F ) ∩ Θ(G). Since Θ(F ) is a tree, there is a unique segment l from a

to b in Θ(F ). By the local product structure of F̃s
O and the fact that F̃s

O, F̃u
O are

transverse, it follows that intersections of l with Θ(G) are discrete in l and we may
assume that l ∩ Θ(G) = {a, b}. Let l′ be the segment in Θ(G) connecting a and
b. Then l ∩ l′ = {a, b}. Let D be the disk of O bounded by l ∪ l′. Consider the
singular foliation in D induced by F̃s

O and count the indices at each singularity of
F̃s
O.
- Corner singularities. If there are ni interior prongs of F̃s

O from a corner (we do
not count l here), then the index is 1/4− ni/2.

- Transverse singularities in l′. Let pi be a singularity of F̃s
O in the interior of l′

so that there are mi prongs of F̃s
O entering int(D). The index is (1−mi)/2. Here

mi = 1 corresponds to l′ being regular on the side facing int(D).
- Interior singularities. Let qi be an interior singularity with ui prongs, ui ≥ 3.

Then the index is 1− ui/2.
The sum of the indices must be 1, the Euler characteristic of D. There are 2

corners, each with index ≤ 1/4, with sum ≤ 1/2. The other two index contributions
are negative so this is impossible. Hence F and G intersect at most once.

A second important consequence of index computations is the following: Suppose
that a leaf F ∈ F̃s intersects two leaves G,H ∈ F̃u and so does L ∈ F̃s. Let
a = Θ(F ∩ G), a single point, and likewise b = Θ(F ∩ H), c = Θ(H ∩ L) and
d = Θ(L∩G); see Figure 6 (a). Let l1 be the closed segment in Θ(F ) with endpoints
a, b and similarly l2 ⊂ Θ(H) with endpoints b, c; l3 ⊂ Θ(L) with endpoints c, d;
and l4 ⊂ Θ(G) with endpoints d, a. Then (l1 ∪ l2 ∪ l3 ∪ l4) bounds a disk D in O.
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Figure 6. (a) Rectangles. (b) Perfect fits in the universal cover.

Consider the singular foliation induced by F̃s
O in D. It is tangent to l1 and l3 and

transverse to l2 and l4. Computing the index at singularities as above: the index
at each corner is ≤ 1/4 and all other indices are negative. Since χ(D) = 1, the only
possibility is that there are no interior prongs from the boundary or corners and
no interior singularities. It follows that there is a product structure in D: a leaf of
F̃s
O intersects l2 if and only if it intersects l4, and a leaf in F̃u

O intersects l1 if and
only if it intersects l3. We therefore call the region D (or Θ−1(D)) a rectangle.

Recall that a line leaf L′ of L ∈ F̃s is the boundary of a component of M − L.
Then L′ separates M̃ into two components and we say that L′ is regular on the side
which is a sector of L. Notice that L is regular if and only if both sides of L′ are
regular. In the same way a line leaf of Θ(L) ∈ F̃s

O is Θ(B) where B is a line leaf of
L.

Definition 4.2. Perfect fits - Two leaves F ∈ F̃s and G ∈ F̃u form a perfect fit if
F ∩ G = ∅ and there are line leaves F0, G0 of F,G respectively and half leaves F1

of F0 and G1 of G0 and also segment flow bands L1 ⊂ L ∈ F̃s and H1 ⊂ H ∈ F̃u,
so that F0 is regular on the side containing L, G0 is regular on the side containing
H and:

L1 ∩G1 = ∂L1 ∩ ∂G1, L1 ∩H1 = ∂L1 ∩ ∂H1, H1 ∩ F 1 = ∂H1 ∩ ∂F1,

with L1 ∩G1 6= ∅, L1 ∩H1 6= ∅ and H1 ∩ F 1 6= ∅.
Furthermore

∀ S ∈ F̃u, S ∩ L1 6= ∅ ⇒ S ∩ F1 6= ∅(1)

and

∀ E ∈ F̃s, E ∩H1 6= ∅ ⇒ E ∩G1 6= ∅.(2)

We refer to Figure 6 (b) for perfect fits. We claim that implications (1), (2) imply
equivalences (that is, S ∩ L1 6= ∅ ⇔ S ∩ F1 6= ∅ and the same for (2)). To see this
let S ∈ F̃u with S ∩ F1 6= ∅. Suppose that L1 contains a singular orbit δ. Extend
L1 to a piece leaf L2 of L. We first show that L2 must be regular on the side
containing F . Otherwise there is a component V of L1− δ which is separated from
F by a line leaf of L. But then any unstable leaf U intersecting V cannot intersect
this line leaf of L and hence cannot intersect F , a contradiction to condition (1).
Using the fact that F0 is regular on the side containing G, one finds R ∈ F̃s near
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enough F , so that R ∩H1 6= ∅ and R ∩ S 6= ∅. By (2), R ∩ G1 6= ∅. Under these
conditions

R ∩G 6= ∅, R ∩H 6= ∅, L ∩G 6= ∅ and L ∩H 6= ∅.
Therefore L,R,G and H form a rectangle. By the properties of rectangles it follows
that S intersects L1. This proves the claim.

The set F 1 ∪ H1 ∪ L1 ∪ G1 separates M̃ . Let A be the complementary region
which does not contain F − F1 in its closure. Let pi ∈ H1 with pi → p ∈ F and
so that Φ̃R(pi) separates Φ̃R(pi−1) from Φ̃R(pi+1) in H1. Let Ri = W̃ s(pi). Then
Ri ∩G 6= ∅, so Ri, G, L,H form a rectangle Ri (see Figure 6 (b)) and there are no
singularities in the interior of Ri. The condition on the pi’s implies that Ri ⊂ Ri+1

for any i. Let

B =
⋃
i∈N

Ri.

Clearly B ⊂ A. We claim that B = A. Otherwise let z ∈ A with z ∈ ∂B. Since
Ri are increasing with i and only the stable boundary component of Ri (contained
in Ri) is changing, it follows that W̃u(z) ∩ Ri 6= ∅ for i big enough. Because
Ri, H, L,G form a rectangle this forces W̃u(z) ∩ L1 6= ∅. The definition of perfect
fit implies that W̃u(z) ∩ F1 6= ∅. The construction of the Ri implies that z ∈ F1,
which in turn implies that z ∈ ∂A, a contradiction. We conclude that A = B. This
is important:

Conclusion. There are no singularities of Φ̃ in A.

Therefore perfect fits produce “ideal” rectangles, in the sense that even though F
and G do not intersect, there is a product structure (of F̃s and F̃u) in the interior
of A. Notice that the flow bands L1, H1 (or the leaves L,H) are not uniquely
determined by the perfect fit (F,G).

There is at most one leaf G ∈ F̃u making a perfect fit with a given half leaf
of F ∈ F̃s and in a given side of F - the proof is the same as that for Anosov
flows [Fe5]. Therefore if (F,G) forms a perfect fit and g is a covering translation
preserving the half leaf F1 and also the components of M − F , then g(G) = G.
This follows from uniqueness of perfect fits and the fact that g takes perfect fits to
perfect fits, because it acts by homeomorphisms in the leaf spaces.

Definition 4.3. Given p ∈ M̃ (or p ∈ O), and a half leaf H of W̃u(p) defined by
Φ̃R(p), let

J u(H) = {F ∈ H(F̃s) | F ∩H 6= ∅} ⊂ H(F̃s).

Notice that W̃ s(p) 6∈ J u(H). Also let

Lu(H) =
⋃

{ p ∈ M̃ | p ∈ F ∈ J u(H) } ⊂ M̃.

Then Lu(H) ⊂ M̃ and W̃ s(p) ⊂ ∂Lu(H). Similarly define J s(L),Ls(L) for a stable
half leaf L.

The notation J u(H) is chosen to match the previous definition for Anosov flows
[Fe5, Fe6]. In those articles the data was p ∈ M̃ , a symbol u or s (corresponding to
a half leaf of W̃u(p) or W̃ s(p)) and a symbol + or − specifying that the half leaf
is on the positive or negative side of the leaf through p of the dual foliation. For



640 SÉRGIO R. FENLEY

E

p

q

(a)
(b)

W

W

W

W

s

u

s

u

~

~

~~
(p)

(p)

(q)

(q)

Figure 7. (a) A lozenge. (b) A chain of lozenges.

instance one such set was J u
+(p). This entails transversal orientations which we do

not have here. The data here is already a half leaf in W̃u(p) or W̃ s(p).

Definition 4.4. Lozenges - Let p, q ∈ M̃ and let there be half leaves Lp, Hp of
W̃ s(p), W̃u(p) defined by Φ̃R(p), and half leaves Lq, Hq of W̃ s(q), W̃u(q) defined
by Φ̃R(q) so that:

Lu(Lp) ∩ Ls(Hq) = Lu(Lq) ∩ Ls(Hp) ⊂ M̃.

Then this intersection is called a lozenge A in M̃ . The corners of the lozenge are
Φ̃R(p) and Φ̃R(q) and A is a subset of M̃ . The sides of A are Lp, Hp, Lq, Hq. The
sides are not contained in the lozenge, but are in the boundary of the lozenge.

Sometimes we also refer to p and q as corners of the lozenge.
An argument as done previously shows that there are no singularities in the

lozenges. This in fact shows that A is an open region in M̃ . However there may
be singular orbits on the sides of the lozenge and the corner orbits also may be
singular. The definition of a lozenge implies that Lp, Hq form a perfect fit and so
do Lq, Hp - this is an equivalent way to define a lozenge with corners Φ̃R(p), Φ̃R(q).
Given any four leaves there is at most one lozenge with sides in them, so we may
refer to the full leaves as the sides of the lozenge.

Two lozenges are adjacent if they share a corner and there is a stable or unstable
leaf intersecting both of them; see Figure 7 (b). Therefore they share a side. A
chain of lozenges is a collection {Ai}, i ∈ I, where I is an interval (finite or not)
in Z; so that if i, i + 1 ∈ I, then Ai and Ai+1 share a corner; see Figure 7 (b).
Consecutive lozenges may be adjacent or not. The chain is finite if I is finite.

Definition 4.5. Suppose ζ ⊂ E ∈ F̃s is a (possibly infinite) strong stable segment
so that for each p ∈ ζ there is a half leaf Hp of W̃u(p) defined by Φ̃R(p) so that

∀ p, q ∈ ζ, J u(Hp) = J u(Hq).

In that case let P =
⋃

p∈ζ Hp. Then P ⊂ M̃ is called an unstable product region
with base segment ζ. The base segment is not uniquely determined by P . Similarly
define stable product regions.
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The main property of product regions is the following: for any F ∈ F̃s, G ∈ F̃u

so that

(i) F ∩ P 6= ∅ and (ii) G ∩ P 6= ∅, then F ∩G 6= ∅.
Suppose for instance that P is an unstable product region. First notice that (ii)
implies that ∅ 6= G ∩ ζ = p, so Hp ⊂ G. By (i) let q ∈ ζ with F ∩Hq 6= ∅. Then
F ∈ J u(Hq), hence F ∈ J u(Hp), that is, F ∩ G 6= ∅. As before it follows that
there are no singular orbits of Φ̃ in P .

We will also denote by rectangles, perfect fits, lozenges and product regions
the projection of these regions to O. One good way to visualize these objects in
O is as follows. Consider proper embeddings ξ : U → O of sets U ⊂ R2 into O,
sending the horizontal and vertical foliations induced in U to the stable and unstable
foliations in ξ(U) ⊂ O. Then a proper embedding is associated to a rectangle ξ(U) if
U = [0, 1]×[0, 1]. A proper embedding is associated to a perfect fit if U is a rectangle
without a corner, that is, U = [0, 1]× [0, 1]−{(1, 1)}. A lozenge is associated to the
image of a rectangle without two opposite corners U = [0, 1]× [0, 1]−{(1, 1), (0, 0)}
(the lozenge is the interior of ξ(U)). A stable product region is associated to the
image of U = [a, b]× [0,∞) (or U = R × [0,∞) when the base segment is infinite)
and similarly for an unstable product region. The important fact here is that there
are no singular orbits in any of these regions.

Definition 4.6. Convergence in the leaf space H(F̃s) of F̃s. We say that Li ∈ F̃s

converges to L ∈ F̃s if there is x ∈ L and xi ∈ Li with xi → x.

For a nonsingular foliation this is the same as requiring that for any x ∈ L there
are xi ∈ Li with xi → x. The introduction of singularities changes this: the Li

usually only converge to a line leaf in L. Here’s why: The trivial case is Li = L
for all but finitely many i, in which case all points in L satisfy the requirement.
So we may assume all Li are distinct from each other and from L. Up to taking a
subsequence we may assume all Li are in the same sector V0 of L. Let E be the
line leaf ∂V0. If y ∈ E, let B be a small segment in W̃uu(y) with one endpoint in y
and contained in V0. Then since there are no components of L−E contained in V0

there is a local product structure of F̃s in this side of E, therefore for i big enough
Li ∩B = yi and clearly yi → y. Finally if y′ ∈ L−E, then E separates y′ from all
Li so no sequence in Li can converge to y. This shows that taking a subsequence
of the Li is unnecessary. We conclude that the points y ∈ L which are obtained as
limits of yi ∈ Li are exactly those in the line leaf E.

A leaf L of F̃s or F̃u is called periodic if there is a nontrivial covering translation
g of M̃ with g(L) = L. This is equivalent to π(L) containing a periodic orbit of Φ.
In the same way an orbit γ of Φ̃ is periodic if π(γ) is a periodic orbit of Φ.

The following is a fundamental result:

Theorem 4.7. Let Φ be a pseudo-Anosov flow in M3. Let F be a non-Hausdorff
point in the leaf space of F̃s. Then F is periodic.

Proof. We will make extensive use of the detailed analysis in [Fe6], particularly
Theorem 3.5, which is the analog result for Anosov flows. The primary goal is to
show that singularities do not affect this situation. Let then L ∈ F̃s, L 6= F , so
that F,L are not separated from each other in the leaf space of F̃s. Let Li ∈ F̃s

with Li → L ∪ F . Since L 6= F , only finitely many Li can be either F or L. As
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Figure 8. Non-Hausdorff points in F̃s.

seen above there are line leaves F0, L0 of F,L respectively with Li → L0 ∪ F0. Let
W0 be the sector of F bounded by F0 and containing L and similarly define U0 as
the sector of L defined by L0.

Fix a ∈ F0, b ∈ L0, with W̃u(a), W̃u(b) not containing singular orbits of Φ̃. Fix
compact segments

A ⊂ W̃uu(a), B ⊂ W̃uu(b), with A− {a} ⊂W0, B − {b} ⊂ U0

and a, b are in the boundary of A,B. For i big enough Li ∩A 6= ∅ and Li ∩B 6= ∅,
so we may assume this is true for all i. For simplicity assume that Li separates
Li−1 from Li+1 for all i ∈ N. Now L1 intersects W̃u(a), W̃u(b) and so does Li.
Therefore L1, Li, W̃

u(a), W̃u(b) forms a rectangle Ri. In particular there are no
singularities in the interior of Ri. Notice that Ri ⊂ Ri+1 and Ri 6= Ri+1 for all i.
By omitting L1 we may assume that R =

⋃
i∈NRi does not contain any singular

orbits. There is a half leaf of F0 contained in the closure of R and similarly for L0.
Given the fact that R has no singularities we can now apply the proof contained

in [Fe6] for Anosov flows. We sketch the steps. As in [Fe6] choose p0 ∈ L1 so that
W̃u(p0) does not intersect either of L or F , but separates one from the other and
so that: for any q in the flow band of L1 bounded by Φ̃R(W̃u(a)∩L1) and Φ̃R(p0),
then W̃u(q) ∩ F0 6= ∅; see Figure 8. The orbit Φ̃R(p0) is uniquely determined by
these conditions. Then as shown in the claim of Theorem 3.5 of [Fe6], F0 and
W̃u(p0) form a perfect fit. Hence F is periodic if and only if W̃u(p0) is. We
concentrate on W̃u(p0). If it is not periodic consider C = π(W̃u(p0)) an unstable
leaf in M . All orbits in C are backward asymptotic. If an orbit in C only limits
(backwards) in a periodic (singular or not) orbit of Φ, then W̃u(p0) is in fact
periodic as we wanted to prove. Otherwise let c ∈ M be a nonsingular limit point
of this backward orbit. Lifting to the universal cover produces covering translates
of W̃u(p0) arbitrarily near c′, where π(c′) = c, that is, the picture in M̃ can be
perturbed in an arbitrarily small way. This produces a contradiction to F0, L0

not separated from each other, as proved in Theorem 3.5 of [Fe6]. Beware that
instead of using the positive/negative half leaves as in [Fe6], one should use the
appropriate half leaves in stable/unstable leaves. If W̃u(p0) is periodic, then all
orbits in C only limit in the periodic orbit in C and there is no small perturbation.
This is a topological rigidity of the stable/unstable foliations which also works in
our situation.
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We say that two orbits γ, α of Φ̃ (or the leaves W̃ s(γ), W̃ s(α)) are connected by
a chain of lozenges {Ai}, 1 ≤ i ≤ n, if γ is a corner of A1 and α is a corner of An.

Theorem 4.8. Let Φ be a pseudo-Anosov flow in M3 closed and let F0 6= F1 ∈ F̃s.
Suppose that there is a nontrivial covering translation g with g(Fi) = Fi, i = 0, 1.
Let αi, i = 0, 1, be the periodic orbits of Φ̃ in Fi so that g(αi) = αi. Then α0 and α1

are connected by a finite chain of lozenges {Ai}, 1 ≤ i ≤ n, and g leaves invariant
each lozenge Ai as well as their corners.

Proof. This is exactly as was done for Anosov flows in Theorems 3.3 and 3.5 of
[Fe4]. We sketch the main ideas here. There is a sector V0 of F0 which contains F1.
Let H0 be the component of (W̃u(α0) − α0) contained in V0. Then F1 ∩H0 = ∅,
or else g would leave invariant two orbits in F1. So F1 ∩ Lu(H0) = ∅. The latter
set is a union of leaves of F̃s. Hence there is a unique leaf L1 ∈ F̃s with a line
leaf contained in ∂Lu(H0) so that L1 is either F1 or the line leaf separates Lu(H0)
from F1. These conditions imply that g(L1) = L1. If L1 = F1 stop. Otherwise
reapply the argument to L1, F1 and eventually produce L2, L3, .... As shown in
[Fe4] this eventually stops, that is, there is Lj = F1. We only need to consider
L0 = F0 and L1, both g-invariant. Let α∗ be the periodic orbit of Φ̃ in L1 and let
H1 be the component of W̃u(α∗)− α∗ intersecting Lu(H0). Then g(H1) = H1 and
H0, H1 intersect the same set of stable leaves. The last part of the proof is to show
that α0, α

∗ are connected by a finite chain of lozenges, all contained in Lu(H0).
Consecutive lozenges are adjacent.

The main result concerning non-Hausdorff behavior in the leaf spaces of F̃s, F̃u

is the following:

Theorem 4.9. Let Φ be a pseudo-Anosov flow in M3. Suppose that F 6= L are not
separated in the leaf space of F̃s. Let F0, L0 be the line leaves of F,L which are not
separated from each other. Let V0 be the sector of F bounded by F0 and containing L.
Let α be the periodic orbit in F0 and H0 be the component of (W̃u(α)−α) contained
in V0. Let g be a nontrivial covering translation with g(F0) = F0, g(H0) = H0 and
g leaves invariant the components of (F0 − α). Then g(L0) = L0. This produces
closed orbits of Φ which are freely homotopic in M . Theorem 4.8 then implies that
F0 and L0 are connected by a finite chain of lozenges {Ai}, 1 ≤ i ≤ n, all contained
in Lu(H0). Consecutive lozenges are adjacent. There is an even number of lozenges
in the chain; see Figure 9. In addition let BF,L be the set of leaves nonseparated
from F and L. Put an order in BF,L as follows: Let C ∈ F̃s not singular so that

F
L

C

α α

1 2 3 4 5 6
A A A A AA

0
0

0

0

1

H

Figure 9. The correct picture between nonseparated leaves of F̃s.
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C ∩ H0 6= ∅. Put an orientation in ζ1 = W̃ ss(a) where a ∈ C. If R1, R2 ∈ BF,L

let α1, α2 be the respective periodic orbits in R1, R2. Then W̃u(αi)∩C 6= ∅ and let
ai = W̃u(αi) ∩ ζ1. We define R1 < R2 in BF,L if a1 precedes a2 in the orientation
of ζ1. Then BF,L is either order isomorphic to {1, ..., n} for some n ∈ N; or BF,L is
order isomorphic to the integers Z. In addition if there are Z, S ∈ F̃s so that BZ,S

is infinite, then there is an incompressible torus in M transverse to Φ. In particular
M cannot be atoroidal. Finally up to covering translations, there are only finitely
many non-Hausdorff points in the leaf space of F̃s.

Given that the regions associated to non-Hausdorff F,L are free of singular orbits,
it follows that the proof of this result is entirely analogous to the corresponding
results in [Fe6]. See the proofs of Theorems 4.3, 4.9 and Corollaries 4.4, 4.5, 4.6
and 4.7 of [Fe6]. Furthermore if BF,L is infinite there is a region in M̃ associated to
this, which is called a scalloped region. For its description see Theorem 5.3 of [Fe6].

Consider the chain Ai, 1 ≤ i ≤ n, of lozenges connecting F0 and L0 produced
by Theorem 4.9. Let α, β be the corner orbits of A1. Then g(A1) = A1, g(α) = α,
g(β) = β. Let α1, β1 be the quotients of α, β by g. Then α1, β1 are periodic orbits
of Φ - which may not be indivisible. Still their invariance by g implies that α1, β1

are freely homotopic. In fact suppose that g acts as a contraction on the set of
orbits of W̃ s(α). Then analysing the action of g on the lozenge A1, we see that g
acts as an expansion in the set of orbits of W̃ s(β). This implies that α1 is freely
homotopic to the inverse of β1. This is fundamental for us:

Conclusion. If F̃s is not Hausdorff, then there are 2 closed orbits γ, ζ of Φ which
are freely homotopic to the inverse of each other, γ ∼= ζ−1.

Theorem 4.10. Let Φ be a pseudo-Anosov flow in M3. If there is a product region
in M̃ , then Φ is topologically conjugate to a suspension Anosov flow.

This follows because product regions in M̃ cannot contain singular orbits of Φ̃.
The proof of Theorem 5.1 of [Fe6] then shows that in fact there are no singular
orbits in M̃ , that is, Φ is an Anosov flow. The result follows as in Theorem 5.1 of
[Fe6].

In section 8 we will produce infinitely many examples of pseudo-Anosov flows in
closed hyperbolic 3-manifolds which have quasi-isometric stable/unstable foliations
as follows: we will check that such flows do not have any freely homotopic closed
orbits. We then use Theorem 4.9 to conclude that F̃s, F̃u have Hausdorff leaf space
and finally use 3.8 to conclude that Fs,Fu are quasi-isometric.

5. Topology of the singular foliations in the leaves of G̃
The goal of the next three sections is to study the asymptotic behavior of Reeb-

less foliations in closed hyperbolic 3-manifolds. Let G be a Reebless, finite depth
foliation in M3. Suppose that G is transverse to a pseudo-Anosov flow Φ. Let G̃
be the lift of G to M̃ . Given F ∈ G̃, then F̃s, F̃u induce singular foliations F̃s

F , F̃u
F

in F . In this section we study topological properties of F̃s
F and F̃u

F . This will be
used in a fundamental way in section 7 to analyse asymptotic behavior of leaves of
G̃ in M̃ . However, in this and the following section we will not assume that Φ is
quasigeodesic or that M is hyperbolic.
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Recall that Θ : M̃ → O is the projection into the orbit space of Φ̃ and that O is
homeomorphic to the plane R2. For our analysis we will need to understand what
the boundary ∂Θ(F ) ⊂ O is when F does not intersect every orbit of Φ̃. Since G is
Reebless, then F is properly embedded in M̃ [No] and therefore separates M̃ . Since
Φ̃ is transverse to G̃ it follows that every orbit of Φ̃ can intersect F at most once.
Therefore Θ : F → O is injective. In analogy with the previous section, a sector of
a leaf l of F̃s

F is the closure (in F ) of a component of F − l. A leaf is regular if and
only if it produces exactly two sectors. Also a line leaf of a leaf l of F̃s

F is ∂U = l′

where U is a sector of l. The components of l − l′ are all in one side of l′ and l′ is
regular in the other side. In the same way a piece leaf is a bi-infinite arc properly
embedded in a leaf of F̃s

F .

Proposition 5.1. ∂Θ(F ) is a disjoint union of line leaves of F̃s
O, F̃u

O, all regular
on the side containing Θ(F ). Also if L ∈ F̃s (or F̃u), then F ∩ L is connected.

Proof. Because Φ is transverse to G and M is compact, then for ε > 0 sufficiently
small there is η(ε) with η(ε) → 0, when ε → 0 so that: any orbit of Φ̃ which
comes within ε of a point z ∈ F ∈ G̃ will in fact intersect F within η(ε) of z. Let
p ∈ ∂Θ(F ) and let pi ∈ Θ(F ) with pi → p. Let z ∈ M̃ with Θ(z) = p. Consider
D ⊂ M̃ a small embedded disk, transverse to Φ̃ with z ∈ int(D) and Θ injective in
D. Let wi ∈ F with Θ(wi) = pi. By truncating finitely many terms if necessary,
there are unique zi ∈ D and ti ∈ R so that wi = Φ̃ti(zi). If |ti| 6→ +∞, assume up
to subsequence that ti → t0. It follows that wi → Φ̃t0(z). But since F is closed in
M̃ , then Φ̃t0(z) ∈ F , contradicting p 6∈ Θ(F ).

Assume then that there is a subsequence ti → +∞. Suppose that the corre-
sponding pi are all in the closure of the same sector defined by m = Θ(W̃ s(z)) at
p. Let l be the line leaf of m which bounds this sector.

Claim. l ⊂ ∂Θ(F ).

Let v ∈ M̃ with Θ(v) ∈ l. For i big enough let qi = W̃uu(v) ∩ W̃ s(wi). The
intersection is nonvoid because l is regular on the side containing pi. There are

si ∈ R, si → +∞ so that Φ̃si(qi) ∈ W̃ ss(wi) and d(Φ̃si (qi), wi) → 0.

This implies that there are εi → 0 with Φ̃si+εi(qi) ∈ F . Hence for i big enough
Θ(qi) ∈ Θ(F ). In fact this shows that the segment from Φ̃si(qi) to wi in W̃ ss(wi)
projects into Θ(F ). One concludes that

Θ(v) ∈ Θ(F ) ∪ ∂Θ(F ).

If Θ(v) ∈ Θ(F ) let E be a small disk contained in F with v in the interior. Hence
for i big enough there are bounded ri with Φ̃ri(qi) ∈ E. But the argument above
shows that there are Φ̃si+εi(qi) ∈ F with si + εi → +∞ as i → +∞. This would
produce two points Φ̃ri(qi) and Φ̃si+εi(qi) of F in Φ̃R(qi), a contradiction.

We conclude that the stable line leaf l ⊂ ∂Θ(F ), showing the claim.
Similarly given the ti defined above, if there is some subsequence tin → −∞,

then we have an unstable line leaf I through p with I ⊂ ∂Θ(F ). Since Θ(F ) is
connected this would force I∩Θ(F ) 6= ∅ which is impossible. In addition l is regular
on the side containing F . This proves the first statement.
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Now let F ∈ G̃ and L ∈ F̃s. Suppose that F ∩ L has two components u1, u2.
Then Θ(u1)∩Θ(u2) = ∅ and there is x ∈ L with Θ(x) separating Θ(u1) from Θ(u2)
in Θ(L) and Θ(x) ∈ ∂Θ(u1). By the proof above Θ(x) ∈ ∂Θ(F ) and there is a line
leaf

m ⊂ ∂Θ(F ) with either m ⊂ Θ(W̃ s(x)) or m ⊂ Θ(W̃u(x)).

Since Θ(u1) ⊂ Θ(F ), Θ(u1) ⊂ Θ(W̃ s(x)) and m is regular on the side containing
Θ(F ), then m ⊂ Θ(W̃ s(x)) cannot happen. Now Θ(u1) and Θ(u2) must be in the
same component of O −m and Θ(x) separates Θ(u1) from Θ(u2) in Θ(L). Hence
there is a component of Θ(W̃u(x))−Θ(x) contained in Θ(F ) and separating Θ(u1)
from Θ(u2) in Θ(F ). This contradicts the fact that m is a line leaf of Θ(W̃u(x))
which is regular on the side containing Θ(F ). This finishes the proof of the second
statement.

The following fact will be useful in the future. Since F separates M̃ and Φ̃ is
transverse to F , there are positive and negative flow sides of F in M̃ − F . By the
above proof, if l ⊂ ∂Θ(F ) and l ⊂ Θ(L) with L ∈ F̃s, then L is on the negative
flow side of F , because the ti → +∞. Similarly if l ⊂ ∂Θ(F ) with l ⊂ Θ(U) and
U ∈ F̃u, then U is on the positive flow side of F . It follows that F separates L
from U .

The following proposition will be fundamental for the results in this article. We
will assume that the lifted foliations F̃s, F̃u to M̃ have Hausdorff leaf spaces.

Proposition 5.2. Suppose that F̃s has Hausdorff leaf space. Let F ∈ G̃, and let
F̃s

F be the induced singular stable foliation in F . Then F̃s
F has Hausdorff leaf space.

Similarly for F̃u
F .

Proof. Suppose there are leaves li ∈ F̃s
F converging to l and l′ ∈ F̃s

F . Let Li, L, L
′ ∈

F̃s so that li ⊂ Li, l ⊂ L and l′ ⊂ L′. Then clearly Li → L and Li → L′ in
H(F̃s). By hypothesis F̃s has Hausdorff leaf space, therefore L = L′. The previous
proposition shows that F ∩ L is connected, and it follows that l = l′. We conclude
that F̃s

F has Hausdorff leaf space.

6. Geometry of the singular foliations in the leaves of G̃
Let G be a finite depth foliation transverse to a pseudo-Anosov flow Φ, so that

the lifted stable and unstable foliations F̃s, F̃u have Hausdorff leaf space. In this
section we do not assume that Φ is quasigeodesic or that M is hyperbolic. We
prove some geometric properties of the leaves of F̃s

F , F̃u
F (for F ∈ G̃), which will be

needed in section 7 to analyse the asymptotic behavior of G when M is hyperbolic.
This is a technical section - on a first reading the reader may just check properties
(A), (B) and (C) for leaves of F̃s

F and then proceed to section 7.
Put a hyperbolic metric in the leaves of G, so that it varies continuously in the

transversal direction [Ca-Co, Can]. The metrics can be chosen so that projection
to lower depth leaves is a local isometry, but that is not necessary for the proofs
here. Given F ∈ G̃ we say that F has depth k if π(F ) has depth k in G. Since F is
isometric to H2, it has a canonical compactification with a circle at infinity which
will be denoted by ∂∞F . Fix the depth k and consider the following properties:
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Property (A). This has 3 parts: For any F ∈ G̃ of depth ≤ k then:
(i) If α̃ is a ray of F̃s

F , then α̃ accumulates in a unique point of ∂∞F .
(ii) If α̃ is a bi-infinite arc in a leaf of F̃s

F , then the endpoints corresponding to
the two rays of α̃ are distinct points in ∂∞F .

(iii) If α̃i is a sequence of rays of F̃s
F converging to the ray α̃ of F̃s

F , then the
limit points of α̃i converge to the limit point of α̃ in ∂∞F .

Property (B). Given k there is µ0 = µ0(k) so that: For any F ∈ G̃ of depth ≤ k,
(i) and (ii) above hold. In addition if γ is a line leaf of a leaf of F̃s

F , x is any point
in γ and γ∗ is the geodesic with same ideal points as γ, then dF (x, γ∗) < µ0.

Property (C). There is µ1 > 0 so that: Given any F ∈ G̃ of depth ≤ k, then the
line leaves of F̃s

F are uniform µ1-quasigeodesics in F .

Property (C) implies the other two [Gr, Gh-Ha, CDP] and states that leaves
of F̃s

F have excellent geometric properties. The strategy is to use induction and
for each k, first prove the topological properties (A) and use (A) and induction to
upgrade this to the geometric information (B) and (C). The Hausdorff property
for the leaf spaces will be fundamental throughout this section. The following two
lemmas show that (i) and (iii) of (A) hold under very general conditions:

Lemma 6.1. Let V be a singular foliation in H2 with only p-prong singularities,
p ≥ 3. Suppose that each half plane U ⊂ H2 contains a curve γ which is a bounded
distance from a geodesic in H2 and γ is either a leaf of V or is transverse to V.
Then the following happens: If β is a ray in a leaf V, then β converges to a unique
ideal point of S1

∞.

Proof. Suppose not. First notice that index computations imply that rays of leaves
of V are properly embedded in H2. Let p 6= q ∈ H2 with β accumulating on p and
q. Choose xi, yi ∈ β with xi → p, yi → q. Let βi be the segment of β between
xi and yi. Since β does not accumulate on H2 assume (up to subsequence) that
every βi has a subset which is very near a component Z of S1

∞ − {p, q}. Let Z ′ be
a closed segment ⊂ Z, so that Z ′ bounds the half plane U ⊂ H2. By hypothesis
there is γ ⊂ U with γ a bounded distance from a geodesic and either γ a leaf of V
or transverse to V . If γ is a leaf of V , then clearly β cannot limit in the interior of
Z ′, a contradiction to the above argument. If γ is transverse to V , then β cannot
intersect γ more than once (index computations), hence β cannot limit in Z ′ and
also in p, q. Hence β limits in only one point of S1

∞. Notice it is fundamental here
that there are no center singularities of V !

Lemma 6.2. Let V be a singular foliation in H2 with only p-prong singularities,
p ≥ 3. Suppose that each ray in a leaf of V limits in a unique ideal point of S1

∞.
Also assume that the set of ideal points of leaves of V is dense in S1∞ and V has
Hausdorff leaf space. Then if βi is a collection of rays converging to a ray β, it
follows that the ideal points of βi converge to the ideal point of β.

Proof. Let βi converge monotonically to β. Let xi ∈ βi converge to x ∈ β, with x
nonsingular, all in a foliated box Q of V ; see Figure 10. Let pi be the ideal point of
βi and p that of β; see Figure 10. Then {pi} is monotone with i in S1

∞. If pi 6→ p,
then pi → q 6= p. Since ideal points of leaves of V are dense in S1∞, there is a leaf l
with ideal point in q′ between p and q. Therefore the sequence {βi} also has to limit
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Figure 10. Proving continuity of ideal points.

on another leaf besides β and the leaf space of V is not Hausdorff, a contradiction.
This finishes the proof.

We now analyse geometric properties of leaves of F̃s
F , F ∈ G̃. Proposition 6.3

proves (A), Proposition 6.6 proves (B) and Proposition 6.7 proves (C).

Proposition 6.3. Suppose that (A), (B) and (C) hold for any depth < k (empty
assumption for k = 0). Then (A) holds for depth k.

Proof. For k = 0 (i) and (ii) were proved by Levitt in [Le]. Let F ∈ G̃ have depth 0.
Since π(F ) is compact, the orbit of any point in ∂∞F under covering translations
is dense in ∂∞F . Part (iii) of (A) now follows from Lemma 6.2.

Using (A) for k = 0, we can prove Lemmas 6.4 and 6.5 which will be needed
for higher depths. Notice that any leaf l of F̃s

F has at most one singularity. This
is because l = L ∩ F , with L ∈ F̃s and L has at most one singular orbit and any
orbit of Φ̃ intersects F at most once. We can define a geodesic lamination VF by
pulling leaves of F̃s

F tight: a regular leaf of F̃s
F produces a geodesic with same ideal

points and a p-prong leaf splits into p geodesics forming an ideal polygon with p
sides. These polygons are the complementary regions of VF .

A convention in this section is: suppose γ is either an embedded segment in
a leaf of G̃ or a properly embedded infinite ray with unique accumulation point
in the corresponding circle at infinity or a properly embedded bi-infinite ray with
well-defined (distinct) ideal points in both directions; then we denote by γ∗ the
associated geodesic segment, ray or bi-infinite geodesic having the same endpoints
(ideal or not) as γ.

Lemma 6.4. Any closed curve ζ in a compact leaf G can be chosen to be either
contained in a leaf of Fs

G or to be be transverse to Fs
G.

Proof. We allow the curve to pass through a singularity of Fs
G, if there are at least

two prongs of the singularity in each side of the curve. Let F ∈ G̃ with π(F ) = G.
Let ζ̃ be a lift of ζ to F , and let a, b be the ideal points of ζ̃ in ∂∞F . There are
two options:

Suppose first that a, b are not ideal points of leaves of F̃s
F . As the complementary

regions of VF are finite sided ideal polygons, then there is a leaf m∗ of VF so that
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its ideal points separate a, b. Let g be the covering translation of F associated to
ζ. Connect y ∈ m∗ to a y′ ∈ g(m∗) by a geodesic arc α. Collapsing α to the
foliation setting produces a curve transverse to Fs

G. Adjusting endpoints yields a
closed curve isotopic to ζ. This transversal can pass through prongs with index
≥ 4, corresponding to a geodesic crossing an ideal polygon region with ≥ 4 sides.

If a is an ideal point of a line leaf l of F̃s
F with other ideal point a′ 6= a, let h be

the covering translation of F having a, b as fixed points, a the repelling one. Then
hn(l∗), n ≥ 0, converges to l∗1 ∈ VF with h(l∗1) = l∗1. Let l1 ∈ F̃s

F , generating l∗1.
Then l1 has ideal points a, b and considering hn(l1) we obtain a limit l2 with h(l2) =
l2. Then π(l2) is a closed leaf of Fs

G isotopic to ζ. This proves the lemma.

Lemma 6.5. Let F ∈ G̃ (of any depth). The union of the accumulation points of
leaves of F̃s

F is dense in ∂∞F .

Proof. Let T be an interval in ∂∞F and W the half plane in F with T as limit set.
We claim that the closure of π(W ) (inM) contains a depth 0 leaf. The hyperbolic

metric in leaves of G̃ are quasiconformal with the induced Riemannian metrics from
M̃ . Take xi ∈ W with dF (xi, F −W ) → +∞ (distance in F ). Obtain balls of
arbitrarily large radius in W and conclude that the closure of π(W ) in M contains
a leaf of G. But any leaf of G contains compact leaves in its closure so the claim
follows.

Hence π(W ) limits on a compact leaf R. The compact leaf has a juncture δ on
that side which defines the spiralling of depth one leaves towards R - for details on
juncture and its properties see [Ga1, Ga3, Ca-Co]. By the above we can assume
that δ is either transverse to or contained in a leaf of Fs

R. The transversal flow Φ
lifts δ to a closed curve in a depth one leaf and also lifts δ completely to the higher
depth leaf π(F ), to curves which are a bounded distance from a geodesic. Consider
all such lifts to the piece of π(F ) contained in a small neighborhood of that side of
R. In the intrinsic topology of π(F ), this collection is properly embedded, that is,
all leaves are isolated and so the same occurs to the lift to F . By the claim above
there are infinitely many lifts intersecting W . Given any two such lifts α0, α1 ⊂ F ,
if neither of them is contained in W , then they intersect the geodesic α2 of F = H2

which is the boundary of W . By the properness property there are only finitely
many lifts intersecting the segment of α2 between α0 and α1. It now follows that
there is a lift α3 entirely contained in W . Notice that α3 is either a leaf of F̃s

F or
transverse to F̃s

F . In the first case the ideal points of α3 are limit points of leaves
of F̃s

F . In the second case any ray of F̃s
F entering the region of F bounded by α3

cannot double back, hence only accumulates in T . This finishes the proof.

We proceed with the proof of the induction step in Proposition 6.3. (B) for
depth 0 is proved in Proposition 6.6 and (C) for depth 0 is proved by the argument
in Proposition 6.7. Let k ≥ 0 and assume that (A), (B) and (C) hold for all depths
≤ k. We prove (A) for k + 1. Let F ∈ G̃ of depth (k + 1), E = π(F ).

Since E has depth k + 1, it can only limit in lower depth leaves. Therefore
for any ε > 0 there is a compact core C(E) so that E − C(E) is ε-close to lower
depth leaves. Let C(F ) = π−1(C(E)). Each component Z of E − C(E) projects
entirely to a lower depth leaf G along flow segments of Φ of length ≤ ε. Then ∂Z

projects to a closed curve in G. Let Z̃ be a lift of Z to F and pr the projection to
a lower depth leaf N with π(N) = G. If ε is sufficiently small, then the projection
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pr : Z̃ → pr(Z̃) ⊂ N is a quasiconformal homeomorphism with quasiconformal
constant very near 1. Therefore pr is a quasi-isometry.

Now consider a ray α̃ of F̃s
F . The argument in the proof of Lemma 6.5 shows

that the hypothesis of Lemma 6.1 is satisfied and then Lemma 6.1 implies that α̃
converges to a unique ideal point in ∂∞F . This proves (i).

We now prove (ii). Properties (A), (B) and (C) for lower depths and ∂C(E)
projecting to a lower depth leaf along the transversal flow Φ imply, as in Lemma
6.4 (applied to the projection of ∂C(E) to a lower depth leaf and pulled back to E
by the transversal flow), that ∂C(E) can be chosen to be either in leaves of Fs

E or
transverse to Fs

E . Notice that ∂C(E) is a finite union of closed curves. Let α̃ be a
bi-infinite arc in a leaf of F̃s

F and α = π(α̃) ⊂ E.
The first option is that α∩∂C(E) = ∅. If α ⊂ E−C(E), let Z be the component

of E − C(E) containing α. Then α projects under some projection pr to a lower
depth leaf G and pr(α) is a leaf of Fs

G. By the induction hypothesis, pr(α) is a
quasigeodesic in pr(Z). Since Z and pr(Z) are quasiconvex subsets in hyperbolic
surfaces they are negatively curved. As pr is a quasi-isometry, then α itself is
a quasigeodesic, hence (ii) follows. There are only finitely many components of
E − C(E), hence α is a uniform quasigeodesic. The other possibility here is that
α ⊂ C(E) and the result follows from Lemma 6.8.

A second option is that α̃ intersects ∂C(F ) only once in β̃ ⊂ ∂C(F ). Let α̃1, α̃2

be the components of α̃−∂C(F ). If ideal points of α̃1, α̃2 are the same, then because
β̃ separates α̃1 from α̃2, these ideal points are an ideal point of β̃. Suppose that
α̃1 ⊂ (F − C(F )). As above it follows that α̃1 is a quasigeodesic and hence that
α̃1 is a bounded distance from β̃. As α̃2 ⊂ C(F ), Lemma 6.8 implies that α̃2 is a
bounded distance from β̃. Hence α is a bounded distance from π(β̃). Let g ∈ π1(E)
so that g(β̃) = β̃ and the ideal point of α̃ is the repelling fixed point of g. Then
all gn(α̃) are a bounded distance from β̃ and intersect it only once. It follows that
gn(α̃) converges (as n → +∞) to two distinct leaves of F̃s

F . This contradicts F̃s
F

having Hausdorff leaf space.
Finally, the third option is that α intersects ∂C(E) at least twice. Let β̃1 6= β̃2 ⊂

∂C(F ) which are intersected by α̃. As β̃1, β̃2 are lifts of closed curves in E, they do
not share an ideal point in ∂∞F . It follows that α̃ has distinct ideal points in this
case too. This proves (ii).

Lemma 6.2 now proves (iii). This finishes the proof of Proposition 6.3.

Proposition 6.6. Property (B) holds for k = 0. In addition suppose that Proper-
ties (A), (B) and (C) hold for all depths ≤ k and that Property (A) holds for depth
k + 1. Then Property (B) holds for (k + 1).

Proof. We first show (B) for k = 0. Let F ∈ F̃s of depth 0 and E = π(F ). If the
result is not true for F there are xi ∈ F with xi in line leaves γi of F̃s

F and geodesics
γ∗i with same ideal points as γi (because (A) holds for F ), so that dF (xi, γ

∗
i ) → +∞.

As π(F ) is compact, then up to subsequence and covering translations of F assume
that xi → x. Then γi → γ, where γ is a line leaf of F̃s

F containing x and regular on
the side γi are limiting to. Let γ∗ be the corresponding geodesic. The key fact here
is that property (iii) of (A) shows that γ∗i → γ∗. As dF (x, γ∗) = a <∞, then for i
big dF (xi, γ

∗
i ) < a+ 1, a contradiction. Since there are only finitely many compact

leaves there is a uniform bound on the distance dF (x, γ∗). This shows Property
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Figure 11. Producing bounded distance from the minimal geodesic.

(B) for k = 0. Compactness is the key here and we will extract some compactness
from the higher depth leaves - the fact that the core C(E) is always compact.

We now prove the second assertion of the proposition. Suppose that result is
true up to k and let F ∈ G̃ of depth k+1 and E = π(F ). If the result is not true for
F , then as above find xi and γi with dF (xi, γ

∗
i ) → +∞. If there is a subsequence of

xi such that dF (xi, C(F )) is bounded, then the argument above finishes the proof.
Hence dF (xi, C(F )) → +∞. Let βi = π(γi). There are two cases:

Case 1. βi intersects ∂C(E).

Up to subsequence assume that βi always intersect the same component ρ of
∂C(E). From π(xi) choose one side and the first point ui ∈ βi ∩ ρ. Let ai ∈ γi

corresponding to this first intersection so that π(ai) = ui (ai ∈ ∂C(F )); see Figure
11. Since ρ is compact the proof for depth 0 shows that dF (ai, γ

∗
i ) is bounded. The

bound only depends on k + 1.
If the other side of γi from ai intersects ∂C(F ), let bi be the first intersection.

As above dF (bi, γ∗i ) is bounded. Let τi be the hyperbolic geodesic segment in
F between ai and bi; see Figure 11. The segments νi of γi between ai and bi
are contained in a fixed component U of (F − C(F )). The boundary of U is a
union of uniform quasigeodesics and we can homotope τi by a bounded homotopy
to τ ′i ⊂ U , so that τ ′i are uniform quasigeodesics. Project U to a lower depth leaf
pr : U → pr(U) ⊂ N , N of lower depth. Then pr(τ ′i ) is also a uniform quasigeodesic
in N . Also Property (C) for k implies that pr(νi) is a bounded distance from the
corresponding geodesic arc in N [Gr, Gh-Ha, CDP], hence dN (pr(νi), pr(τ ′i )) is
bounded. The quasi-isometry pr implies that dF (νi, τ

′
i) is bounded and finally

dF (νi, τi) is also bounded. Since dF (ai, γ
∗
i ), dF (bi, γ∗i ) are also bounded, then τi is

in a bounded neighborhood of γ∗i . Hence d(xi, γ
∗
i ) is uniformly bounded.

The second option in Case 1 is that the other side of γi does not intersect ∂C(F ).
Then the corresponding ray of γi is contained in (F−C(F )). A proof as above using
Property (C) for rays in lower depth leaves implies the same result.

Case 2. βi does not intersect ∂C(E).

If βi is contained in E −C(E), then as seen in the proof of the induction step in
Proposition 6.3 (first option), βi is a uniform quasigeodesic and the result follows.
Otherwise βi is contained in C(E) and the result then follows from Lemma 6.8.

There are only finitely many isotopy classes of leaves at each new depth, except
for the fibering regions. A fibering region minus a leaf has a product foliation
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F × [0, 1]. An analysis as above in F × [0, 1] yields the same result. Hence the
bound µ0 in Property (B) can be chosen to work for all leaves of depth ≤ k + 1.
This finishes the proof of Proposition 6.6.

Proposition 6.7. Suppose that Properties (A), (B) and (C) hold for all depths
≤ k. In addition suppose that Properties (A) and (B) hold for depth (k + 1) also.
Then Property (C) holds for (k + 1) also.

Proof. The same proof works for k = 0 or higher. First we claim that for any a > 0
there is b(a) > 0 so that if x, y are in the same leaf γ of F̃s

F (with F ∈ F̃s), then

dN (x, y) > a ⇒ l([x, y]) > b(a),

where [x, y] is the segment of γ from x to y and l denotes length. Otherwise find
a > 0 and xi, yi with dNi(xi, yi) < a, but l([xi, yi]) > i. Up to subsequence and
covering translations assume that xi → x and yi → y. As dNi(xi, yi) < a, the local
product structure of G̃ implies that x, y are in the same leaf F of G̃. If they are
in the same leaf γ of F̃s

F , then the local pictures of F̃s and G̃ along γ show that
l([xi, yi]) is bounded, a contradiction (notice that F̃s

F is regular along γ in the side
the xi, yi are converging to). Since the leaf space of F̃s is Hausdorff, then x, y are in
the same leaf L of F̃s. But then L∩N is not connected, contradicting Proposition
5.1. This proves the claim.

Let γ be a line leaf of F̃s
F with depth(F ) ≤ (k + 1). By (B) there is a > 0

so that γ ⊂ Ba(γ∗). Let b′ = b(2a + 1). Given x, y ∈ γ, let x′, y′ ∈ γ∗ with
dF (x, x′), dF (y, y′) < a. Split the segment of γ∗ from x′ to y′ into ≤ (dF (x′, y′)+1)
subsegments of length 1, except for the last with length ≤ 1. Let z′i be the starting
points of these subsegments and zi ∈ [x, y] with dF (z′i, zi) < a. Then

dF (zi, zi+1) < 2a+ 1, so l([zi, zi+1]) < b′.

Consequently

l([x, y]) ≤ (dF (x, y) + 1)b′.

This shows the quasi-isometric behavior of line leaves of F̃s
F and finishes the proof.

Remark. Notice that Property (B) for line leaves easily implies the same property
for piece leaves of F̃s

F (probably with a different constant) and the same is true for
Property (C).

Lemma 6.8. Let S be a compact surface with a hyperbolic metric and ∂S 6= ∅. Let
D be a singular foliation in S with only p-prong singularities (p ≥ 3 in the interior,
p ≥ 2 in the boundary); and in general position with respect to ∂S. Let D̃ be the
lifted foliation to S̃. S̃ has a compactification with an ideal boundary ∂S̃ which is
a Cantor set. Suppose that D̃ has Hausdorff leaf space. Then Properties (A), (B)
and (C) hold for leaves of D̃.

Proof. If γ is a leaf of D̃, then a sector V of γ is a component of S̃ − γ and a line
leaf of γ is the closure (in S̃) of ∂V − ∂S̃. We stress that as S̃ has boundary, line
leaves of D̃ may be rays or even finite segments. Up to a bounded distortion in
the metric assume that ∂S is geodesic. The proof of (i), (ii) of (A) is as in [Le].
As in Lemma 6.2, (iii) of Property (A) follows from the fact that D̃ has Hausdorff
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leaf space. The bounded distance from geodesics (Property (B)) is proved as in
Proposition 6.6, for k = 0. Property (C) is proved as in Proposition 6.7.

7. Continuous extension of leaves

In this section we prove Theorem D of the introduction:

Theorem 7.1. Let G be a Reebless, finite depth foliation in a closed hyperbolic
3-manifold M . Suppose that G is transverse to a quasigeodesic pseudo-Anosov flow
Φ and that the stable and unstable foliations of Φ are quasi-isometric singular fo-
liations. Let E be a leaf of G with hyperbolic metric quasiconformal to the induced
Riemannian metric from M . Let F be a lift of E to M̃ and ϕ : F → M̃ the in-
clusion map. Then ϕ extends to a continuous map ϕ : F ∪ ∂∞F → M̃ ∪ S2

∞. The
ideal boundary map ϕ|∂∞F : ∂∞F → S2

∞ gives a parametrization of the limit set
of F as the image of a continuous (closed) curve.

Proof. Fix once and for all a hyperbolic metric in E, quasiconformal to the induced
Riemannian metric from M . This may be the metric used in the last section.

We will use the unit ball model for H3 and identify M̃ ∪ S2
∞ to a closed ball in

Euclidean R3. Let de be the induced Euclidean metric in M̃∪S2
∞ and let diame(B)

be the Euclidean diameter of the set B ⊂ M̃ ∪ S2
∞. Similarly there is a unit disk

model for F ∼= H2 and a Euclidean metric and diameter in F ∪ ∂∞F , which are
also denoted by de and diame, respectively.

Fix a base point a0 ∈ H3. Let B ⊂ H3 be a set which is K-quasi-isometrically
embedded in H3. Then if dH3(B, a0) is very big, it follows that diame(B) is very
small [Th2]. Otherwise find b1, b2 ∈ B not de close. Then the hyperbolic geodesic
segment connecting them has big de diameter and therefore is dH3 boundedly near
a0. By the quasi-isometric hypothesis, dH3(a0, B) is also bounded, a contradiction.
The same is true for quasigeodesics in H3 [Th2]. This fact applied to leaves of
F̃s, F̃u is fundamental for our result and will be used throughout the proof. Let
K > 0 so that all leaves of Fu,Fs are K-quasi-isometrically embedded and all flow
lines of Φ are K-quasigeodesics.

Fix F ∈ G̃. As is the case for depth 0 leaves, the results of the previous section
show that each leaf γ ∈ F̃s

F is quasi-isometrically embedded in F and hence can
be pulled tight: If γ is regular it produces a geodesic γ∗. If γ contains a p-prong
singularity it produces an ideal polygon with p-sides; each side is obtained by pulling
tight a line leaf of l. Let Vs

F be the union of the geodesics thus produced. Clearly for
any l, l′ distinct leaves in Vs

F , then l ∩ l′ = ∅ because leaves of F̃s
F do not intersect.

Suppose that li ∈ Vs
F and li → l (l a geodesic of F ). Then there are line leaves si

of F̃s
F with s∗i = li. By Property (B), si does not escape compact sets in F and

thus si → s (up to subsequence). By (iii) of (A) it follows that s∗ = l. Therefore
Vs

F is closed and is a geodesic lamination in F .
Consider a complementary region C of Vs

F . Take a leaf l of ∂C and consider the
line leaf s ∈ F̃s

F so that s∗ = l and so that s separates all other line leaves of F̃s
F

with same ideal points as s, from the remaining ideal points of C in ∂∞F . Notice
s is unique. If the leaf α of F̃s

F containing s is not singular on the corresponding
C side, then there are si line leaves of F̃s

F , with si → s on that side. But then
s∗i → s∗ on that side of s and by construction s∗i 6= s∗. This implies that for i big
enough s∗i intersects the interior of C, a contradiction. Hence α is singular on the
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C side. This shows that any complementary region C of Vs
F comes from splitting a

singular leaf of F̃s
F and is an ideal polygon with a bounded number of sides.

We cannot stress enough the importance of the hypothesis that F̃s, F̃u have
Hausdorff leaf space for the arguments in this section. As the reader will see, this
property is used in various strategic situations along the proof of Theorem 7.1.

Notation. Since there will be so many cases to consider, then in order to simplify the
exposition we do the following: the notation l, l′, li will almost always be reserved
for leaves of F̃s

F and L,Li will denote the leaves of F̃s containing these. In the
same way g, g′, gi will be leaves of F̃u

F and G,Gi leaves of F̃u.

Construction of extension of ϕ. We now start the proof of Theorem 7.1. We may
assume that no depth 0 leaf of G is a virtual fiber of M over S1, for otherwise G is
essentially a fibration [Fe-Mo] and the result was proved by Cannon and Thurston
[Ca-Th]. We will use Properties (A), (B) and (C) of the previous section. Fix
F ∈ G̃ and ϕ : F → M̃ . First we show there is a natural extension of ϕ to S1

∞. Let
q ∈ ∂∞F .

Case 1. q is not an ideal point of a leaf of F̃s
F or F̃u

F .

Let r be a geodesic ray in F with ideal point q. The goal is to show that ϕ(r)
has a unique ideal point in S2

∞ and let this be ϕ(q). Since any other ray r′ with
ideal point q is asymptotic to r, then ϕ(r), ϕ(r′) are a bounded distance from each
other in M̃ , so this is well defined.

The complementary components of Vs
F are finite sided ideal polygons in F . Since

q is not an ideal point of leaves of Vs
F , there are si leaves of Vs

F , so that {si}, i ∈ N
(closure in F ∪ ∂∞F ), defines a neighborhood system for q in F ∪ S1

∞. Let li be
leaves of F̃s

F with si = l∗i . As there are only countably many singular leaves in
F̃s

F , we may assume that li are regular and that li separates li−1 from li+1 for all
i ∈ N. Then r intersects each si once and, for each i, r is eventually on the q
side of li in F ∪ S1∞. Property (B) implies that dF (li, si) is bounded, consequently
{li}, i ∈ N, also defines a neighborhood system of q in F ∪ ∂∞F . Let Li ∈ F̃s

with li ⊂ Li. Because li separates li−1 from li+1 in F , it follows that Li separates
Li−1 from Li+1 in M̃ . Here is the key fact: the intersection r ∩ li is bounded in
F and so r is eventually contained in the component Wi of F − li which has q in
its closure (in F ∪ ∂∞F ); see Figure 12 (a). This is the two-dimensional picture.
Then from the point of view of M̃ , ϕ(r) is eventually contained in the component
of M̃ − Li containing ϕ(Wi). Similarly let gi be leaves of F̃u

F defining a system of
neighborhoods of q and Gi ∈ F̃u with gi ⊂ Gi. Assume that Li, Gi are regular.

Case 1.1. One of the sequences Li or Gi escapes in M̃ .

Suppose that (say) Li escapes in M̃ . Fix a basepoint a0 ∈ H3. Let Ui be
the component of (H3 − Li) always containing a subray of ϕ(r). Since Li escapes
M̃ , then dH3(Li, a0) → +∞. As Li is K-quasi-isometrically embedded, where K is
fixed, then diame(Li) → 0 and consequently diame(Ui) → 0. In addition the family
{Ui}, i ∈ N, is nested. Let U i be the closure of Ui in M̃∪S2

∞. Then diame(U i) → 0
also. Therefore ⋂

i∈N

U i = {z},
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Figure 12. (a) System of neighborhoods of an ideal point of F .
(b) Separation properties of leaves.

a single point in S2
∞. Since ϕ(r) is eventually contained in any Ui and hence in U i,

it follows that z is the unique limit point of ϕ(r). Let this be ϕ(q).

Remark. In the case of fibration then: (1) No point q ∈ ∂∞F is an ideal point of
leaves of both F̃s

F and F̃u
F , (2) If q is not an ideal point of leaves of F̃s

F , then the
leaves Li defined above escape M̃ . Case 1.1 shows there is a natural extension of
ϕ to ϕ : ∂∞F → S1∞. In addition the sets Li (or Gi) show that the extension is
continuous (see proof of continuity later in this section). The difficulty in the higher
depth case is that in general we cannot prove (and it may not be true) that (1) or
(2) holds. This makes the analysis much more complicated.

Case 1.2. Neither Li nor Gi escapes in M̃ .

Then the {Li}, i ∈ N, have to accumulate in M̃ and since they are nested, it
follows that Li → L as i→ +∞, in fact Li → L′ where L′ is a line leaf in L. The
leaf L is unique because H(F̃s) is Hausdorff.

Let i1 = 1. Since {gj}, j ∈ N, defines a neighborhood system of q in F ∪
S1∞, choose j1 so that gj1 is in the interior of the neighborhood bounded by li1
and containing q; see Figure 12 (b). Inductively choose im so that lim is in the
neighborhood in F ∪S1

∞ bounded by gjm−1
and containing q and choose jm so that

gjm is in the neighborhood bounded by ljm and containing q. For simplicity we
assume these are the original sequences li, gi. Then li separates gi−1 from gi in F
and gi separates li from li+1 for all i.

Lemma 7.2. Li ∩Gj = ∅ for all i, j.

Proof. Suppose there are i, j so that Li ∩Gj 6= ∅. Then there is u ∈ M̃ with

Θ(u) ∈ ∂Θ(li) ⊂ Θ(Li)

and either

Θ(u) ∈ Θ(Li ∩Gj) or Θ(u) separates Θ(li) from Θ(Li ∩Gj).

It follows that Θ(u) ∈ ∂Θ(F ) and by Proposition 5.1 there is either a line leaf v of
Θ(W̃ s(u)) contained in ∂Θ(F ) or a line leaf v of Θ(W̃u(u)) contained in ∂Θ(F ),
with v regular on the side containing Θ(F ). Since v is regular on the Θ(F ) side and
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Figure 13. (a) The case Θ(l) is a ray in a leaf of F̃s
O. (b) The

case Θ(l) is a bounded segment.

Li = W̃ s(u) intersects F , then v cannot be contained in W̃ s(u). In the second case
v ∩ Θ(gi) = ∅ and therefore v separates Θ(F ) from Θ(gi), a contradiction. This
proves the lemma.

Since gi separates li from li+1 in F for all i and Li ∩Gj = ∅, then Gi separates
Li from Li+1. Choose x ∈ L′ nonsingular and a segment η in W̃u(x) transverse
to Φ̃ with one endpoint in x and in the side from which Li is limiting to L. Then
Li ∩ η 6= ∅ for i big enough. Since Gi separates Li from Li+1, then Gi ∩ η 6= ∅ for
i big. As η ⊂ W̃u(x), it follows that Gi = W̃u(x). But then clearly Gi ∩ Li 6= ∅, a
contradiction.

We conclude that Case 1.2 cannot happen.

Case 2. q is an ideal point of a line leaf of F̃s
F but not of F̃u

F (or vice versa).

Let l be a ray in a line leaf of F̃s
F with q as ideal point. Let L ∈ F̃s with

l ⊂ L. In L the ray l is transverse to flow lines of Φ̃. Parametrize l by arclength as
ut, t ∈ [0,∞). Let αt be the flow line of Φ̃ with ut ∈ αt.

Suppose first that Θ(l) is an infinite arc in Θ(L), see Figure 13 (a), which shows
l ⊂ L. In that case αt escapes in L as t → ∞ and since L is properly embedded
in M̃ , then the αt also escape in M̃ . As the αt are K-quasigeodesics in H3, then
diame(αt) → 0. All αt have the same positive ideal point, because they are forward
asymptotic. We denote this by L+. Then ϕ(ut) → L+.

The other option is that Θ(l) is a bounded segment in Θ(L), see Figure 13 (b),
which shows l ⊂ L. In that case αt → α as t→∞ where α is a flow line in L. Fix
a disk D transverse to Φ̃ and with center in x0 ∈ α. For each t let

at ∈ R with ut = Φ̃at(Φ̃R(ut) ∩D).

Notice that ut escapes in L as t→∞, otherwise F would not be properly embedded
in M̃ . Therefore |at| → +∞. If there is a subsequence ati → +∞, then since
the αt are all asymptotic to α in forward time it would follow that l ∩ α 6= ∅, a
contradiction. Therefore at → −∞ as t→∞. Let α− ∈ ∂∞L be the negative ideal
point associated to α. Then ut → α− in L ∪ ∂∞L. Since the embedding L→ M̃
extends continuously to ∂∞L, it follows that ϕ(ut) → η−(α).

If l′ is another ray of F̃s
F with q as an ideal point, then Property (B) applied to

F implies that, up to taking subrays, l and l′ are a bounded distance apart in F
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Figure 14. (a) Isotopic leaves of Fs
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versal cover.

[Th2, Gr, CDP]. Therefore ϕ(l′) is also a bounded distance apart from ϕ(l) in M̃
and ϕ(l′) converges to the same ideal point in S2

∞ as ϕ(l′). Let ϕ(q) be this ideal
point.

Case 3. q is an ideal point of leaves of both F̃s
F and F̃u

F .

If l is a ray of F̃s
F with ideal point q, then as in Case 2, ϕ(l) converges to a

unique ideal point in S2
∞. By Property (B) applied to F , any other ray of F̃s

F or
F̃u

F with q as ideal point has a subray a bounded distance from l in F , so will have
the same ideal point when seen in M̃ . Let ϕ(q) be this common ideal point. In
Cases 2 and 3 notice that if ζ is any geodesic ray in F with ideal point q in ∂∞F ,
then ϕ(ζ) converges to a unique ideal point in S2

∞, which is exactly ϕ(q). This was
also true in Case 1.

Conclusion. This finishes the construction of a natural extension map ϕ : F ∪
∂∞F → M̃ ∪ S2

∞.

Remark. Case 3 does not occur for suspension pseudo-Anosov flows transverse to
fibrations and one might think at first they do not occur in general. However such
is not the case! For instance suppose that G has a leaf E so that Fs

E ,Fu
E have

closed leaves α and β which are isotopic, see Figure 14 (a), which shows α, β and
Fs

E restricted to the annulus bounded by α ∪ β. This situation is quite possible;
see the construction of pseudo-Anosov flows in [Mo4]. It also occurs in the case
of intransitive Anosov flows as constructed by Franks and Williams [Fr-Wi]. Let
F be a lift of E to M̃ and lift α, β coherently to α̃, β̃ respectively in F . Then
α̃ ∈ F̃s

F , β̃ ∈ F̃u
F have the same ideal points in ∂∞F providing an example where

Case 3 happens.

Proof of continuity of ϕ. We will now prove that the extension map ϕ : F∪∂∞F →
M̃ ∪ S2∞ is continuous. Clearly we only need to check continuity of ϕ in ∂∞F . Let
q ∈ ∂∞F . The proof of continuity is a bit tricky and long, with many cases to
be checked. In some cases we prove continuity by considering neighborhoods of q
in F ∪ ∂∞F bounded by r, where r is a line leaf of F̃s

F or F̃u
F and r its closure

in F ∪ ∂∞F . Sometimes the neighborhood is obtained by a curve in F which is
a concatenation of 2 or 3 segments or rays in different leaves of F̃s

F , F̃u
F . Finally

in other times we fix a ray r of F̃s
F or F̃u

F with ideal point q and then consider
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continuity at q on each side of r in F ∪ ∂∞F . Again the side neighborhoods may
be bounded by one leaf or a union of pieces of various leaves.

Case 1. q is not an ideal point of a line leaf in F̃s
F or F̃u

F .

We refer to the proof of the extension. Recall that only Case 1.1 can happen.
Fix ε > 0. Then one of Li or Gi escapes in M̃ , so we assume that Li escapes
in M̃ as i → ∞. Recall that r is a geodesic ray in F with ideal point q and
Ui is the component of M̃ − Li containing a subray of ϕ(r). Since Li escapes in
M̃ , choose i big enough so that diame(U i) < ε . Let Ai be the component of
F − li accumulating on q. Then {Ai}, i ∈ N, forms a neighborhood system of q in
F ∪ ∂∞F . By definition ϕ(Ai) ⊂ Ui.

Lemma 7.3. ϕ(Ai) ⊂ U i.

Proof. Let w ∈ Ai ∩ ∂∞F (a closed segment in ∂∞F ), but w not a boundary point
of this segment. In all cases (1), (2) and (3) of the definition of ϕ(w) we considered
a ray (geodesic or not) λ in F which has w as ideal point; then we showed that ϕ(λ)
has a single accumulation point in S2∞, and finally let ϕ(w) be this accumulation
point. In case (1) λ was a geodesic ray and in cases (2) and (3) λ was a ray
in a leaf of F̃s

F or F̃u
F . The previous section shows that these rays are always

uniform quasigeodesics, hence have subrays which are a bounded distance (in F )
from geodesic rays with w as ideal point [Th2, Gr, CDP]. So up to taking a subray,
we may assume that λ is a ray entirely contained in Ai. Since ϕ(λ) ⊂ ϕ(Ai) ⊂ Ui,
we conclude that ϕ(w) ∈ U i. Consequently ϕ(Ai) ⊂ U i.

Since we can make diame(U i) as small as we want, we conclude that ϕ is con-
tinuous at q. This finishes the proof in Case 1.

Case 2. q is an ideal point of a line leaf of F̃s
F but not of F̃u

F .

Let r be a ray of F̃s
F with q as an ideal point, so that r does not contain a

singularity of F̃s
F . Let l be a line leaf of F̃s

F with r ⊂ l and let L ∈ F̃s with l ⊂ L.
Choose

uj ∈ r with uj → q, as j →∞.

Let gj be the unstable leaf of F̃u
F through uj; see Figure 15 (a). If gj does not

escape in F as j → ∞, then gj → g, which is a leaf of F̃u
F with g ∩ l = ∅. By

continuity of ideal points of line leaves of F̃u
F it follows that one of the ideal points

of g is q, a contradiction to the hypothesis. Therefore gj escapes in F . In the same
way all the endpoints of gj converge to q as j →∞. Otherwise ∂∞F has an interval
free of ideal points of line leaves of F̃u

F , a contradiction to Lemma 6.5.
Hence the gj define a system of neighborhoods of q in F∪∂∞F . Let Gj ∈ F̃u with

gj ⊂ Gj ; we may assume Gj is nonsingular. If Gj escapes M̃ , then an argument as
in Case 1 shows that ϕ is continuous at q.

Suppose then that Gj → G. We consider continuity at q in each side of l in
F ∪ ∂∞F . Consider all line leaves of F̃s

F in a side of l in F having q as one ideal
point. If li is a sequence of such line leaves, let qi 6= q be the other ideal point of li
in ∂∞F ; see Figure 15 (a) (notice that r ⊂ l in this figure).
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Figure 15. (a) Escaping li in the leaf F . (b) The picture in M̃ .

Case 2.1. There is a sequence li as above with qi → q; see Figure 15 (a).

This is equivalent to saying that li escapes in F when i→∞. Assume that the
li are nested in F . Let li ⊂ Li ∈ F̃s. There are two subcases:

Case 2.1.1. The Li escape in M̃ .

Let ε > 0. Each li bounds a unique region Di ⊂ F with l ∩Di = ∅; see Figure
15 (a). Let Ui be the component of M̃ − Li with Di ⊂ Ui. The hypothesis implies
that the Ui escape in M̃ . Choose i big enough so that diame(U i) < ε.

Let N1 be the wedge region bounded by li, l and a segment connecting their
starting points. Since all line leaves of F̃s

F are uniform quasigeodesics, there is a
fixed η > 0 satisfying: as li, l converge to the same ideal point q, then there are
subrays ri, r′ of li, l which are in an η-neighborhood of each other in F [Th2, CDP,
Gh-Ha]. In addition, because the hyperbolic metrics in leaves of G are uniformly
quasiconformal to the induced Riemannian metrics from M , it follows that there is
η′ depending only on η so that ϕ(ri) is in an η′-neighborhood of ϕ(r′) in M̃ and the
same holds for ϕ(N1). This bounded thickness argument for wedges will be used a
few times throughout the proof.

Hence there is a small neighborhood N2 of q in F ∪∂∞F , so that diame(ϕ(N)) <
ε, where N = N1 ∩N2. The set N ∪Di is a neighborhood of q in that side of l in
F ∪S1

∞. Since ε is arbitrary, this implies that ϕ is continuous at q in that side of l.

Case 2.1.2. The Li converge to L0 in F̃s.

The goal is to show that this case cannot happen. As li escapes in F and li ⊂ Li

with Li → L0, then L0 has a line leaf L′ with Θ(L′) ⊂ ∂Θ(F ).
We first claim that Gj ∩L0 = ∅ for any j. Since qi → q and li escapes in F , then

there is

i0 so that ∀i ≥ i0, li ∩ gj = ∅.
The argument of Lemma 7.2 shows that Li ∩Gj = ∅ for any i ≥ i0. On the other
hand if Gj ∩ L0 6= ∅, then Gj ∩ Li 6= ∅ for i sufficiently big, contradicting the
previous fact. This proves the claim.

Now as Gj → G as j → ∞ and this sequence has no other limit (F̃u has
Hausdorff leaf space), it follows that there is j0 so that for j ≥ j0, Gj separates L0

from G; see Figure 15 (b). In addition Li converges to L0 as i → ∞, so there is
an i1 big enough so that Li1 separates Gj0 from L0; see Figure 15 (b). Therefore
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Figure 16. (a) Producing a rectangle in M̃ . (b) A region in F
without singularities.

Gj ∩Li1 = ∅ for any j ≥ j0. But this leads to a contradiction as follows: In F there
is j > j0 with

gj ∩ li1 6= ∅.
Hence

Gj ∩ Li1 6= ∅.
We conclude that Case 2.1.2 cannot happen.

Case 2.2. There is no sequence li as above with qi → q.

Let s be the outermost line leaf of F̃s
F on that side of l and with one ideal point

q. Up to taking a subsequence of {gj}, j ∈ N, we may assume that gj ∩ s 6= ∅ for
all j ∈ N. Let s ⊂ S ∈ F̃s. There are two subcases:

Case 2.2.1. S ∩G 6= ∅.
We will show that this case cannot happen. Choose si ∈ F̃s

F , with si → s from
the side opposite to l. Notice that s is regular on the si side. Choose si regular and
{si}, i ∈ N, nested. Then si has an ideal point qi with qi → q when i converges to
∞, but qi 6= q for any i. In addition assume that qi 6= qm if i 6= m.

Let Si ∈ F̃s with si ⊂ Si. Let S′ be the line leaf of S with s ⊂ S′ and Si → S.
Choose i big enough so that Si ∩ G 6= ∅. Fix j so that gj ∩ si 6= ∅, Gj ∩ S 6= ∅.
Then Gj ∩ Si 6= ∅ and G,Gj , S, Si form a rectangle R; see Figure 16 (a). There is
no singular orbit of Φ̃ in the interior of R. Notice also that since s separates l from
si (or s = l), then gj ∩ s 6= ∅.

Let γ0 be the component of s − gj which is a ray with ideal point q. Let γ2 be
the component of si − gj which is a ray with ideal point qi. Let γ1 be the closure
of the bounded component of gj − (s∪ si); see Figure 16 (b). Then γ1 is a compact
segment with endpoints in the starting points of γ1, γ2.

Let H be the component of F − (γ0 ∪ γ1 ∪ γ2) which intersects si′ for all i′ > i.
Since F ∩ G = ∅ it follows that H ⊂ R. In particular there are no singularities of
F̃s

F in H . Choose points xn ∈ H with xn → q′ ∈ ∂∞F , so that q′ 6= q, q′ 6= qi.
Because line leaves from F̃s

F are a bounded distance from geodesics, then there are
balls in F , BF

an
(xn) ⊂ H and an → +∞ as n → ∞. This is disallowed by the

following lemma. We conclude that Case 2.2.1 cannot happen.
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Lemma 7.4. There is a0 > 0 so that for any F ′ ∈ G̃ and any x ∈ F ′, then the ball
BF ′

a0
(x) in F ′ has a singularity of F̃s

F ′ .

Proof. Otherwise find Fn ∈ G̃, xn ∈ Fn, an → ∞, with BFn
an

(xn) without singular-
ities. Therefore π(BFn

an
(xn)) also has no singularities. Assume that π(xn) → y in

M . The local product structure of foliations then implies that if C1 is the leaf of G
containing y, then C1 does not intersect any singular orbit of Φ. But C1 contains
a compact leaf, hence the same would be true for a compact leaf. Then Fs would
induce a nonsingular foliation in this compact leaf, a contradiction to the compact
leaf having genus > 1.

Case 2.2.2. S ∩G = ∅.
Let V1 be the component of M̃ − S′ containing all Si, and let V2 be the other

component of M̃ − S′.

Case 2.2.2.1. G ⊂ V1; see Figure 17 (a).

We will show that this case does not happen. Let Ui be the component of M−Si

not containing S. Since Si → S when i → ∞, then
⋃

i∈N(Ui) = V1. As G ⊂ V1

there is i0 ∈ N so that G ∩ Ui 6= ∅, for all i ≥ i0.
Suppose that

Sm ∩G 6= ∅, Sn ∩G 6= ∅, for m 6= n, and m,n > i0.

Let j ∈ N so that Gj ∩ Sm 6= ∅, Gj ∩ Sn 6= ∅. Then Sm, Sn, G,Gj form a rectangle
in M̃ . Since qm 6= qn, Lemma 7.4 shows that this is impossible. Therefore there is
at most one i ≥ i0 so that Si ∩ G 6= ∅. It now follows that there is i1 ≥ i0 so that
G ⊂ Ui for all i ≥ i1.

Let Y0 ∈ F̃s be a nonsingular leaf with Y0 ∩ G 6= ∅. Since Gj → G as j → ∞,
there is j0 so that

∀j ≥ j0, Gj ∩ Y0 6= ∅.
Notice that Y0 ⊂ Ui for any i ≥ i1. In addition since s∩gj 6= ∅ in F , then S∩Gj 6= ∅
in M̃ . Since Si separates Y0 from S, then Gj ∩ Si 6= ∅, ∀i ≥ i1, ∀j ≥ j0.

Recall that Gj is regular. Fix i > i1. Then S ∩Gj0 6= ∅ and Si ∩Gj0 6= ∅. Let P
be the segment flow band in Gj0 defined by these two orbits in Gj0 and let σ be a
defining segment for this flow band. Our goal is to show that σ is a base segment
for a stable product region in M̃ and hence derive a contradiction. Let C0 be the
component of M̃ − Gj0 containing Gj for j > j0. For any z ∈ σ, let Rz be the
component of W̃ s(z) − Φ̃R(z) contained in C0. Fix z ∈ σ. Then W̃ s(z) separates
S from Si. Since

∀j > j0, Gj ∩ S 6= ∅, Gj ∩ Si 6= ∅,
then

Gj ∩ W̃ s(z) 6= ∅, in fact Gj ∩Rz 6= ∅.
Let βj

z = Gj ∩ Rz . If βj
z does not escape in Rz as j → ∞, then βj

z → βz when
j →∞, where βz is an orbit of Φ̃ in Rz . Since

βj
z ⊂ Gj and Gj → G as j →∞,
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Figure 17. (a) Case G ⊂ V1. (b) Case G ⊂ V2.

then W̃u(βz) and G are not separated in the leaf space of F̃u. But this leaf space
is Hausdorff, hence G = W̃u(βz), that is, G ∩ Rz 6= ∅. This contradicts G ⊂ Ui

and Rz ∩ Ui = ∅. Therefore βj
z escapes in Rz. This also implies that Rz has no

singularities. Consequently

∀z, w ∈ σ, J s(Rz) = J s(Rw),

that is, σ is the defining segment of a stable product region in M̃ . Theorem 4.10
then implies that Φ is a suspension Anosov flow and in particular has no singular
orbits, a contradiction. We conclude that Case 2.2.2.1 cannot happen.

Case 2.2.2.2. G ⊂ V2; see Figure 17 (b).

Let G′j = Gj ∩V1. Recall that V1 is the component of M̃ −S′ containing Si. Let
Zj be the component of M−Gj containing G and let Rj = S′∩Zj . Let γj = S∩Gj .
We may assume that Rj has no singularity. Let

Dj = Rj ∪ γj ∪ G′j .

Then Dj separates M̃ . Let Cj be the component of M̃ −Dj not containing G.
The γj escape in S′ as j → ∞. Otherwise γj → γ and as seen in Case 2.2.2.1

(Hausdorff leaf space of F̃u), γ ⊂ G, so S∩G 6= ∅, a contradiction. Therefore Rj∪γj

escapes in S′ and so escapes in M̃ also (S′ is properly embedded in M̃). The leaves
of F̃s are uniformly quasi-isometrically embedded in M̃ , hence this implies that
diame(Rj ∪ γj) → 0 as j →∞. Suppose that diame(G′j) 6→ 0. Then there is

a2 > 0 and jm →∞ with diame(G′jm
) > 2a2.

Since all orbits in G′jm
share the same negative ideal point in S2

∞, it follows that
there are orbits

αm ⊂ G′jm
of Φ̃ with diame(αm) > a2.

As the αm are uniform K-quasigeodesics, it follows that the αm intersect a fixed
compact set in M̃ . Up to subsequence assume that αm → α. Since Gjm → G, it
now follows that α ⊂ G. But

αm ⊂ G′jm
⊂ V1, therefore α ⊂ V1 ∪ ∂V1 = V1 ∪ S′.
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This contradicts G ⊂ V2. We conclude that diame(G′j) → 0. Therefore diame(Dj)
→ 0 and since G intersects M̃ − Cj for any j, it follows that diame(Cj) → 0.

Let Hj be the component of F − gj so that q ∈ Hj (closure in F ∪ ∂∞F ). Let
Ij = Hj ∩ V1. Then Ij is a neighborhood of q in that side of s in F ∪ ∂∞F (this is
the side not containing l if l 6= s). These definitions imply that ϕ(Ij) ⊂ Cj in M̃ .
By Lemma 7.3, ϕ(Ij) ⊂ Cj . Since diame(Cj) → 0 when j → ∞, it follows that ϕ
is continuous at q in that side of s in F ∪ ∂∞F . The wedge between l and s has
bounded thickness so continuity in the wedge follows as in Case 2.1.1.

This finishes the proof of continuity in Case 2.

Case 3. q is an ideal point of line leaves of both F̃s
F and F̃u

F .

Case 3.1. For every pair of leaves l ∈ F̃s
F and g ∈ F̃u

F with both l and g having q
as ideal point, then l ∩ g = ∅.

Let l′ ∈ F̃s
F , g′ ∈ F̃u

F with ideal point q. Assume for simplicity that l′, g′ do not
have singularities of F̃s

F , F̃u
F . Choose ui nested in l′ and converging to q as i→∞.

Let gi ∈ F̃u
F be the unstable leaf of F̃u

F through ui, assumed to be regular. By the
hypothesis of Case 3.1, q is not an ideal point of gi for any i. The gi are nested in
F getting closer to g′ and never cross to the other side of g′ in F . Therefore the
sequence gi does not escape in F as i→∞ and since they are nested, they converge
to a line leaf g of F̃u

F . By construction g separates g′ from l′; see Figure 18 (a). As
ui → q and gi are uniform quasigeodesics in F , it follows that gi has at least one
of the ideal points near q [Th2, CDP]. Therefore at least one of the ideal points of
gi converges to q. Continuity of ideal points in rays of F̃u

F implies that g has one
ideal point q. In the same way choose vi nested in g′ with vi → q as i → ∞ and
let li be the stable leaf of F̃s

F through vi. Then li → l, where l is a line leaf of F̃s
F

with ideal point q. As li intersects g′, then no li has q as ideal point.
The line leaves l and l′ share a common ideal point q and since they are uniform

quasigeodesics, there is a wedge W of bounded thickness between them [Th2].
We claim that g does not intersect the wedge W . If l and l′ share the other

ideal point q1 too, then any leaf α of F̃s
F between them can only have q, q1 as ideal

points. Since distinct prongs of α have to limit in different ideal points, α can have
only two prongs (α is nonsingular) and hence has one ideal point q. If g intersects
the wedge W in p, the stable leaf through p will have ideal point q, contradicting
the hypothesis of Case 3.1. On the other hand suppose l, l′ have other ideal points
y, y′ respectively with y 6= y′. If a leaf γ of F̃s

F intersecting W does not have q as an
ideal point, then all of its ideal points are in the segment of ∂∞F from y to y′ and
not containing q. By the uniform quasigeodesics property, it follows that γ cannot
have points close to q in the de metric of F ∪∂∞F . Hence there is a subwedgeW1 of
W so that any stable leaf intersecting W1 will have q as ideal point. By hypothesis
this implies that g does not intersect W1. Since g does not intersect either l or l′,
but has an ideal point q, it now follows that g does not intersect W either. This
proves the claim. Notice that a priori it might be g and l share both ideal points;
see Figure 14 (b).

The claim shows that g′, g, l, l′ are nested in this order in F as shown in Figure
18 (a). This implies that as li → l, then there is i0 so that li ∩ g 6= ∅, ∀i > i0. Also
since gi → g, there is

i1 > 0 so that ∀ i > i1, gi ∩ li0 6= ∅.
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As the li, gi are nested it is easy to see that for any i, j ≥ i2 = max{i0, i1}, then
li ∩ gj 6= ∅.

Given i > i2 let g′i be the component of (gi− li) intersecting l. Let also l′i be the
component of (li − gi) intersecting g; see Figure 18 (a). Let

αi = l′i ∪ (li ∩ gi) ∪ g′i.

Then αi separates F . Let Hi be the component of F − αi so that q ∈ Hi. The Hi

are nested.

Claim. {Hi}, i ≥ i2, defines a neighborhood system of q in F ∪ ∂∞F .

In ∂∞F , q is an interior point of Hi ∩ ∂∞F , because none of the ideal points of
gi, li is q. Let

Z =
⋂
i≥i2

Hi.

The ideal points of l′i converge to q and the ideal points of g′i converge to q. Since
for any i, Hi ∩ ∂∞F is an interval with boundary in these ideal points it follows
that Z ∩ ∂∞F = {q}.

Suppose now that Z 6= {q}. Then as {Hi}, i ≥ 0, is nested in F ∪ ∂∞F , find
zi ∈ αi, zi → z ∈ F and i→∞. Up to subsequence assume that (say)

zi ∈ g′i ∪ (gi ∩ li) ⊂ gi.

Since gi → g, it follows that z ∈ g. Since li∩ g → q as i→∞, choose i3 big enough
so that z 6∈ Hi3 . Then z 6∈ Z, a contradiction. This proves the claim.

We now analyse the situation in the ambient 3-manifold M̃ , which in fact will
be very similar to the setting in F . Let li ⊂ Li ∈ F̃s, l ⊂ L ∈ F̃s, gi ⊂ Gi ∈ F̃u

and g ⊂ G ∈ F̃u. Then Li → L, Gi → G as i→∞.
Since l ∩ g = ∅, the argument of Lemma 7.2 shows that L ∩G = ∅.
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We may assume that Gi and Li are nonsingular for all i. Let Ui be the component
of M̃ −Gi containing G, and let Yi be the component of M̃ −Li containing L. Let

L′i = Li ∩ Ui, G
′
i = Gi ∩ Yi and βi = Li ∩Gi.

Then Di = L′i∪βi∪G′i separates M̃ . Let Ci be the component of M̃−Di containing
the ray of g which has ideal point q in F ∪ ∂∞F ; see Figure 18 (b). The argument
of Case 2.2.2.2 shows that Gi − (G′i ∪ βi) is the part of Gi which is converging to
G and similarly Li − (L′i ∪ βi) → L. This implies that Di escapes compact sets in
M̃ . Since orbits of Φ̃ in Di are K-quasigeodesics, diame(Di) → 0. Consequently
diam(Ci) → 0. The definitions of Hi and Ci imply that ϕ(Hi) ⊂ Ci and Lemma
7.3 shows that ϕ(Hi) ⊂ Ci. Since {Hi}, i ≥ i2, forms a neighborhood system of q
in F ∪ ∂∞F , this proves continuity of ϕ at q. This finishes Case 3.1.

Case 3.2. There are line leaves l ∈ F̃s
F , g ∈ F̃u

F , with l and g having q as ideal
point in ∂∞F and l ∩ g 6= ∅.

This is the final case to be considered. In this case, particularly in subcase 3.2.2,
we need to consider a continuous family of leaves, rather than just a countable set
of leaves. Therefore parametrize l by arclength as

l : {ut}, t ≥ 0, with ut → q when t→ +∞, so l(t) = ut.

In the same way let g : {vt}, t ≥ 0, with vt → q when t → +∞. Suppose that
u0 = v0. Here we only parametrize the rays of l and g starting in u0 and having q
as ideal point. Let

gt ∈ F̃u
F with gt ∩ l = ut and lt ∈ F̃s

F with lt ∩ g = vt.

Let gt ⊂ Gt be leaves of F̃u and lt ⊂ Lt leaves of F̃s. Let A′ be the region of F
bounded by l ∪ g and having q as its only ideal point; see Figure 19 (a).

We claim there is no singularity in the interior of A′. From the point of view of
F̃s

F , the region A′ has boundary consisting of a ray in the leaf l and a ray transverse
to F̃s

F contained in g. Any ray of any leaf of F̃s
F or F̃u

F entirely contained in A′
can only limit in q, hence has q as ideal point. Hence no leaf of F̃s

F , F̃u
F can have

two rays contained in A′. If there is a singularity p in the interior of A′, then at
most one prong in its stable leaf (of F̃u

F ) can be contained in A′. Therefore at least
two prongs have to exit A′, and they can only exit through the ray in g. This
contradicts the fact that the stable leaf through p and the leaf g can intersect at
most once. This proves the claim.

Given that A′ has no singularity in the interior, then by taking a smaller A′ we
can assume it has no singularity in the boundary either and also that L0 and G0

are regular leaves.
For any t > 0, the leaf (gt − l) has a unique component g′t contained in A′. The

rays g′t have ideal point q for any t and do not have any singularity. In the same way
(lt − g) has a nonsingular ray contained in A′ with ideal point q. We will consider
continuity on the side of l0 containing lt, t > 0.

Suppose first that Lt escapes in M̃ when t → ∞. Fix ε > 0. For t sufficiently
big diame(Lt) < ε. Also the wedge in F between lt and l0 has bounded thickness.
Then continuity at q follows as in Case 2.1.1. Suppose from now on that Lt → L
as t→∞.
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Figure 19. (a) Intersecting leaves of F̃s
F , F̃u

F with same ideal point
q in F ∪ ∂∞F . (b) The case G0 ∩ L 6= ∅.

Case 3.2.1. G0 ∩ L 6= ∅; see Figure 19 (b).

In this subcase we will only use the countable set of leaves Li, Gi, i ∈ N (that is,
only those Lt for which t is a natural number). Let w0 ∈ G0 ∩ L. Notice that

(G0 ∩ Li) ∩ F = (G0 ∩ F ) ∩ (Li ∩ F ) = g0 ∩ li = vi.

As

G0 ∩ Li → G0 ∩ L, then Θ(vi) → Θ(w0).

Since Θ is injective when restricted to F and vi escapes in F as i → ∞, it follows
that Θ(w0) ∈ ∂Θ(F ). In addition g0 ⊂ W̃u(w0) ∩ F , hence by Proposition 5.1,
W̃ s(w0) = L has a line leaf L′ with Θ(L′) ⊂ ∂Θ(F ). Notice that Li → L′.
Therefore L ∩ F = ∅ and li escapes in F as i → ∞. Let L∗ be the component of
L′ − (L′ ∩G0) which does not intersect any Gi, i > 0; see Figure 20 (b). Choose

wj ∈ W̃ ss(w0) ∩ L∗, wj nested and escaping in W̃ ss(w0) ∩ L∗.
Let Sj = W̃u(wj). As Θ(L′) ⊂ ∂Θ(F ), then for any j ∈ N, it follows that
Sj ∩ F 6= ∅. The intersection is a leaf sj = Sj ∩ F of F̃u

F ; see Figure 20 (a). For
j = 0, s0 = g0 and S0 = G0.

We claim that any sj ⊂ F has ideal point q in ∂∞F . Fix j and find i(j) such
that Li(j) ∩ Sj 6= ∅; see Figure 20 (b). Then

Li(j), L, S0, Sj form a rectangle R ⊂ M̃

and there is no singularity in the interior of R. The rectangle projects in F to a
region bounded by a ray in sj , a ray in s0 = g0 and a segment in li(j), because
L ∩ F = ∅. This region has no singularity, so by Lemma 7.4, it follows that the
ideal points of sj and s0 are the same, proving the claim.

Rather than checking whether Sj escapes in M̃ or not we do a proof which deals
with both cases. We may assume that Sj is regular for all j. For each j, consider

i(j) > j with Li(j) ∩ F ∩ Sj 6= ∅
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and suppose for simplicity that Li(j) is regular. This implies that sj intersects li(j)
in a single point; see Figure 20 (a). Consider the curve βj ⊂ F consisting of the
union of:

(1) the ray of sj − li(j) with q as ideal point,
(2) sj ∩ li(j) and
(3) the ray of li(j) − sj with ideal point 6= q; see Figure 20 (a).

Then βj separates F . Let Hj be the component of F − βj not containing l0. In
addition let

R1
j be the component of Sj − (L′ ∪ Li(j)) between L′ and Li(j).

Let R2
j (respectively R3

j ) be the component of L′−Sj (respectively the component
of Li(j) − Sj) not intersecting S0; see Figure 20 (b). Let

Dj = R2
j ∪ (Sj ∩ L′) ∪ R1

j ∪ (Sj ∩ Li(j)) ∪ R3
j ;

see Figure 20 (b). Then Dj separates M̃ . Let Cj be the component of M̃ − Dj

not containing G0; see Figure 20 (b). We can choose i(j) carefully so that the
{Cj ∪ Dj}, j ∈ N, form a nested family of subsets in M̃ , that is, they decrease as
j increases. These definitions imply that Dj ∩ F = βj - notice that L′ ∩ F = ∅. In
addition ϕ(Hj) ⊂ Cj .

We claim that Cj escapes in M̃ as j → ∞. Since Φ̃R(wj) escapes in L′ as
j →∞ and L′ is properly embedded in M̃ , it follows that R2

j escapes in M̃ . Since
Li(j) → L′ as j →∞, then if R3

j does not escape in M̃ as j →∞, it has to limit in
some z ∈ L′. But for j big enough Sj separates z from R3

j , a contradiction. Finally
we consider R1

j . Let U ′j be the component of M̃ − (L′ ∪ Li(j)) containing R1
j and

let

Uj = U ′j ∪ L′ ∪ Li(j) = closure of U ′j.

Fix j0 ∈ N. Then R1
j ⊂ Uj0 for any j > j0, hence any limit point of {R1

j}, j ∈ N,
has to be in Uj0 . Since this is true for any j0 ∈ N, then the limit points of
{R1

j}, j ∈ N, have to be in ⋂
j∈N

Uj = L′.
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Figure 21. (a) The case L ⊂ V1. (b) The impossible case L ⊂ V2.

The last equality follows from Li(j) → L′. But as before any z ∈ L′ is separated
from R1

j by Sj′ for any j′ < j, so again this cannot happen. We conclude that Dj

escapes in M̃ . It follows that diame(Cj) → 0 as j → ∞. In addition the wedge
between li(j) and l0 in F has bounded thickness, hence the wedge between ϕ(li(j))
and ϕ(l0) in ϕ(F ) does also. A proof as in Case 2.1.1 shows continuity of ϕ in q in
that side of l0.

Case 3.2.2. G0 ∩ L = ∅.
Let V1 be the component of M̃ −G0 containing Gt, t > 0, and let V2 be the other

component of M̃ −G0.

Case 3.2.2.1. L ⊂ V1.

We refer to Figure 21 (a). Recall that L′ is the line leaf of L with Lt → L′ when
t → +∞. Consider only those t for which Lt is regular. Let Zt be the component
of M̃ − Lt containing L′. Let

L′t = Lt ∩ V2, γt = Lt ∩G0, Rt = G0 ∩ Zt and Dt = L′t ∪ γt ∪Rt.

Then Dt separates M̃ . Since L′t ⊂ V2, no part of L′t can converge to points in
L. Hence L′t escapes in M̃ . The γt also escape in G0 as t → ∞, hence the Dt

also escape in M̃ . Let Ct be the component of M̃ −Dt not containing L′ and let
Ht = Ct∩F . The proof of continuity in this case is analogous to that of Case 3.2.1.

Case 3.2.2.2. L ⊂ V2.

We will show this case cannot happen. Recall the continuous maps η−, η+ :
M̃ → S2

∞:

η−(w) = lim
t→−∞ Φ̃t(w) ∈ S2

∞, η+(w) = lim
t→+∞ Φ̃t(w) ∈ S2

∞.

Also if γ is an orbit of Φ̃ we define η−(γ), η+(γ); if Y ∈ F̃s, there is η+(Y ) and if
Y ∈ F̃u, there is η−(Y ).

Notice first that G0 ∩ Lt 6= ∅ for any t ≥ 0, because g0 ∩ lt = ut. In addition
G0 ∩Lt escapes in G0 as t→ +∞, for otherwise this intersection has to limit in an
orbit in L′, so G0 ∩ L′ 6= ∅, a contradiction.

We refer to Figure 21 (b). Fix x > 0. Then

Gx ∩ L0 ∩ F = gx ∩ l0 = ux,
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hence Gx intersects Lt for any t > 0 sufficiently small. We are using here the fact
that l0 is regular.

The first option is that there is t > 0 so that Gx ∩ Lt = ∅. Let t′ ≥ 0 be the
smallest so that Gx ∩Lt′ = ∅ - this is where we use the continuous family of leaves
Lt. The orbits Gx ∩Lt escape in Gx as t→ t′, t < t′, for otherwise Gx ∩Lt′ 6= ∅, a
contradiction. Therefore

diame(Gx ∩ Lt) → 0 and (Gx ∩ Lt) → η−(Gx) in M̃ ∪ S2
∞ as t→ t′, t < t′,

because all orbits in Gx are backward asymptotic. In particular

η+(Gx ∩ Lt) → η−(Gx), as t→ t′ and t < t′.

As Gx ∩ F = gx and

gx(t) = (Gx ∩ F ) ∩ l(t) = (Gx ∩ F ) ∩ (Lt ∩ F ) = (Gx ∩ Lt) ∩ F ∈ Gx ∩ Lt,

it follows that

ϕ(gx(t)) → η−(Gx) in M̃ ∪ S2
∞ as t→ t′

and consequently the ray ϕ(gx) limits to η−(Gx) in M̃ ∪ S2
∞. But

η+(Gx ∩ Lt) = η+(Lt) = η+(G0 ∩ Lt) → η+(G0 ∩ Lt′), as t→ t′.

Since η+(Gx ∩ Lt) → η−(Gx) also, we conclude that η−(Gx) = η+(G0 ∩ Lt′). So
ϕ(gx) limits to η+(G0 ∩ Lt′).

Notice that G0 ∩ F = g0 and the orbits (G0 ∩ Lt) escape in G0 as t → ∞.
Therefore ϕ(g0(t)) converges to η−(G0). In other words the ray ϕ(g0) limits to
η−(G0) in M̃ ∪S2

∞. Since g0, gx have rays which are a bounded distance from each
other in F , then ϕ(g0), ϕ(gx) have the same ideal points in S2∞. Putting this all
together we conclude that

η+(G0 ∩ Lt′) = η−(G0), which implies that η+(G0 ∩ Lt′) = η−(G0 ∩ Lt′).

This contradicts the fact that G0 ∩Lt′ is a quasigeodesic in M̃ . Therefore the first
option cannot occur.

The second option is that Gx ∩ Lt 6= ∅ for any t ≥ 0. Recall that Z0 is the
component of M̃ − L0 containing L. If Gx ∩ Lt does not escape in Gx as t → ∞,
then Gx ∩ L′ 6= ∅, a contradiction to L′ ⊂ V2. Hence the half leaf Tx = Gx ∩ Z0

intersects the same set of stable leaves as T0 = G0 ∩ Z0. The same is true for
any half leaf Tx′ = Gx′ ∩ Z0, 0 ≤ x′ ≤ x, thus producing a product region. This
contradicts Theorem 4.10, so this option cannot happen either. We conclude that
Case 3.2.2.2 cannot happen. This finishes the analysis of Case 3.2.

This completes the proof of continuity and hence of Theorem 7.1.

8. The examples

In this section we describe a class of examples of quasi-isometric singular foli-
ations in hyperbolic 3-manifolds, as well as examples of finite depth foliations in
closed hyperbolic manifolds with good asymptotic properties in the universal cover.
The examples come from Mosher’s construction of pseudo-Anosov flows transverse
to finite depth foliations [Mo4].

First we need to describe round handles, which were created by Asimov [As].
A round handle is a standard neighborhood of a hyperbolic periodic orbit. We
consider a modified round handle as defined by Mosher [Mo3]: Let O be an octagon
in the plane with sides O1, ..., O8. Let T = O×S1 which has a structure of sutured
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Figure 22. (a) The flow in the round handle. (b) The leaves of
the foliation GT .

manifold (see [Ga1, Ga2, Ga3] for sutured manifolds) where the plus boundary is
R+T = (O1×S1)∪ (O5×S1), the minus boundary is R−T = (O3×S1)∪ (O7×S1)
and the sutures ∆ = (O2×S1)∪(O4×S1)∪(O6×S1)∪(O8×S1). There is a semiflow
Φ1 in T having a unique orbit which stays for all time, forwards and backwards, in
T . This orbit α is periodic and hyperbolic. The sets W s(α),Wu(α) are properly
embedded annuli in T with boundary components in R−T,R+T , respectively. The
flow is incoming along R−T , outgoing along R+T and tangent to ∆; see Figure 22
(a).

In T consider a foliation GT so that components of R−T,R+T are annuli leaves
and all other leaves of GT are homeomorphic to ideal quadrilaterals, which intersect
∂T transversely and only in the sutures ( = ∆T ), and so that GT is a fibration in
T − (R−T ∪R+T ). See Figure 22 (b), where for simplicity we consider the picture
in the universal cover of T . The interior leaves are noncompact and spiral towards
the boundary leaves. Then GT is a depth one foliation [Ga1]. The induced foliation
in O2 × S1 has only the boundary components as compact leaves and the leaves in
the interior spiral towards the boundary leaves in different directions, that is, this
is not a Reeb foliated annulus; similarly for (O4 × S1), (O6 × S1) and (O8 × S1).
The construction is done so that GT is transverse to Φ1.

Now consider S a compact surface with 4 boundary components. Consider the
product flow in S × I, also denoted by Φ1. Choose two disjoint embedded arcs
β1, β2 connecting the 4 boundary components of S two by two. Put a depth one
foliation in S × I as follows: first put a product foliation in (S −N(β1 ∪ β2)) × I.
Let h : I → I be a homeomorphism with h(0) = 0, h(1) = 1 and h(t) < t for
every t ∈ (0, 1). Let ∂N(β1) = ζ ∪ ζ′. Put a foliation in N(β1) × I so that all
leaves are compact disks from ζ× I to ζ ′× I with one boundary component ζ×{t}
and the other component ζ ′ × {h(t)}. This is a depth one foliation. Similarly for
N(β2) × I. Glue these together to produce a depth one foliation GS×I in S × I.
This foliation is a fibration over the circle in S× (0, 1) and the only compact leaves
are (S × {0}), (S × {1}). Choose GS×I so that it is transverse to Φ1. Now glue
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the components of the suture in T to the components of ∂S × I so as to produce
a manifold M1 with two boundary components ∂−M1 and ∂+M1. The glueing can
be done so that foliation and flow match along the glueing set inducing a semiflow
Φ1 in M1 and a depth one foliation GM1 in M1 so that: ∂−M1, ∂+M1 are the only
compact leaves of GM1 , the foliation GM1 is transverse to Φ1 and Φ1 is outgoing
along ∂+M1 and incoming along ∂−M1.

The annuli W s(α),Wu(α) in T become properly embedded annuli in M1 which
are respectively the stable Bs

0 and unstable Bu
0 branched surfaces in M1. Bs

0 , B
u
0

induce laminations λ−, λ+ in ∂M1. Each of λ−, λ+ is a union of two disjoint simple
closed curves in ∂M1.

Now glue ∂+M1 to ∂−M1 by a homeomorphism g to produce a closed manifold
M . Clearly M has a depth one foliation G with a unique compact leaf denoted
by R and Φ1 in M1 induces a flow in M which is transverse to G. This flow in
M is also denoted by Φ1. Choose g so that g(λ+) and λ− intersect efficiently
and bind ∂−M1. Under these conditions it follows that M is atoroidal [Mo3] and
consequently hyperbolic [Th2, Th4, Mor]. In [Mo3] it is shown that R is not a
fiber of a fibration of M over the circle. In particular G is not a perturbation of a
fibration and Φ1 is not a suspension flow. This class of examples was created by
Mosher and is described in detail in [Mo2, Mo3].

We now make extensive use of the construction of pseudo-Anosov flow transverse
or almost transverse to G which was carried out in detail in [Mo4]. The key fact
here is that in M all orbits of Φ1 intersect R transversely, with the exception of
α. Mosher’s construction of the pseudo-Anosov flow [Mo4] first produces a pair of
good stable and unstable branched surfaces in M . In this case the procedure first
cuts M along R and then decomposes M1 into a product sutured manifold (which
is S × I) and the round handle T . The pair of branched surfaces Bs

0 , B
u
0 intersect

transversely and form a “dynamic pair” in T ; see [Mo4], section 4.5. Once the
glueing ∂+M1 → ∂−M1 is done, then Bu

0 is a branched surface with boundary in
the interior of M and one can flow Bu

0 forwards along the Φ1 flow in M to extend
this branched surface - eventually pieces which are very near other pieces of the
extended Bu

0 are tangentially collapsed together to produce a compact unstable
branched surface Bu, which is properly embedded in M . The flow Φ1 is slightly
adjusted to be tangent toBu. This produces a generalized flow Φ2: it is not uniquely
integrable. For instance in the branch set of Bu, the flow moves forward from the
two sheeted side to the one sheeted side. Then orbits of Φ2 in Bu are uniquely
defined for all forward time, but have many divergent paths in backward time; see
section 2.4 of [Mo4]. In the same way Bs is constructed. Orbits of Φ2 in Bs have
unique backward orbits, but forward orbits are not uniquely integrable along the
branch set of Bs. In any case all orbits of Φ2 are transverse to G. The surfaces
Bs, Bu are transverse to each other (see Figure 23 (a)) and their intersection τ is
a graph. The flows in Bs, Bu induce a nonintegrable flow in τ - that is, τ is an
orientable graph; see Figure 23 (b).

The surfaces Bs, Bu form a dynamic pair in the closed manifold M and Φ2

is tangent to both of them. In particular this implies that M − (Bs ∪ Bu) is a
disjoint union of pinched tetrahedra and solid tori; see section 2.4 of [Mo4]. Each
corner orbit of a torus piece is a periodic orbit of Φ2. Since Bs, Bu form a dynamic
pair in M , then in section 3.3 of [Mo4], Mosher constructs a uniquely integrable
flow Φ3 associated to Bs, Bu. This flow is called a pA flow [Mo4] and has stable
and unstable laminations which are contained in neighborhoods of Bs and Bu.



672 SÉRGIO R. FENLEY

(a)

(b)

B

B

B B
s

u

s uU

B Bs uUτ =

Figure 23. (a) Intersection of stable/unstable branched surfaces.
(b) The oriented flow in τ = Bs ∩Bu.

Roughly Φ3 is constructed as follows: τ = Bs ∩Bu is an oriented graph and Φ2 is
a nonuniquely integrable flow in τ ; see Figure 23 (b). The flow Φ3 is constructed
by essentially transforming the nonuniquely integrable dynamics of Φ2 in τ into a
uniquely integrable flow. The flow Φ3 has nonwandering set which is the union of
finitely many pseudohyperbolic orbits all contained in torus pieces, finitely many
attracting and repelling periodic orbits which are contained in the boundary of the
torus pieces and finally a hyperbolic set Z which is contained in a neighborhood
N(τ) of the graph τ . The orbits of Φ3 in Z are in one-to-one correspondence with
oriented paths in τ . The flow Φ3 is still transverse to G.

Finally the pseudo-Anosov flow Φ4 is obtained from Φ3 by collapsing the comple-
mentary regions of N(Bs ∪Bu); see section 3.4 of [Mo4]: a pinched tetrahedron is
collapsed to a segment and a torus piece is collapsed into a pseudohyperbolic closed
orbit. This collapsing preserves flow lines and produces a pseudo-Anosov flow Φ4

in M . The collapsing operation is the inverse operation of the double DA blow up
operation (the blow up operation is described in detail in [Mo1]). In the blow up
operation the singular leaves of the stable and unstable foliations Fs,Fu of Φ4 split
up to produce nonsingular laminations Λs,Λu of Φ3. Notice that the dynamics of
Φ4 is essentially encoded by that of Φ3 in N(τ). It is in the blow down operation
Φ3 → Φ4 that the flow may lose the property of being transverse to G; see sections
3.5, 3.6 and 3.7 of [Mo4]. It may be that Φ4 is only “almost transverse” to G: this
means that one needs to blow up a finite collection γ1, ..., γn of pseudohyperbolic
orbits of Φ4 into a collection of annuli and adjust the flow accordingly to produce
a new flow transverse to G. See a detailed definition in section 3.5 of [Mo4]. We
will analyse the almost transversality of Φ4 more carefully below.

It will be important to understand the oriented orbits of Φ2 in τ = Bs ∩ Bu.
First notice that since α = Bs

0 ∩ Bu
0 , then α is a closed orbit of Φ2 in τ . Let γ be

an orbit of Φ2 in τ . If γ enters T , then it is either eventually contained in α or,
by the hyperbolic structure of Φ2 in T , it follows that γ eventually has to leave T
and γ intersects R transversely in an outgoing branch of τ . If a point in γ is in
S×I, then because Φ1 was a product flow in S×I and Φ2 is obtained by tangential
collapsing of Φ1, it follows that γ also intersects R transversely. The same is true
for the negative direction. Putting all of this together, it follows that either γ is
contained in α or γ will intersect R transversely.
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Before concluding what this implies for orbits of Φ4, we have to analyse whether
Φ4 is transverse to G or not. In order to do that we first consider torus pieces. Since
g(λ+) intersects each component of λ−, it follows that Bu

0 is extended by the flow
Φ1 to intersect Bs

0. Flowing forwards along Φ1 will bring this unstable branched
surface very near α and the original Bu

0 and eventually collapse pieces of it with
the original Bu

0 (here Φ2 will collapse forward orbits). The branch set created near
α is transverse to α. This shows that α (as a full orbit) cannot be a corner orbit
of a torus piece of M − (Bs ∪ Bu). As α is the only orbit of Φ2 in τ which does
not intersect R, it follows that all orbits of Φ2 in τ which are corner orbits of torus
pieces must transversely intersect R. The same is now true for the flow Φ3 in N(τ).

The question as to whether Φ4 is transverse to G or only almost transverse
to G depends on the structure of the foliation G induced in the torus pieces of
M −N(Bs ∪ Bu); see sections 3.5 and 3.6 of [Mo4]. Let V be such a torus piece.
Then there are compact leaves of G induced on V and there are two options: either
the compact leaves are meridian disks in V or they are peripheral annuli in V , which
do not intersect the corner orbits. In the first case Φ4 will be transverse to G and in
the second case Φ4 will not be transverse to G and will only be almost transverse to
G. In our situation the corner orbits (of Φ3) in V all intersect R transversely. Since
R∩ V is compact, it follows that the compact leaf R cannot intersect V in a union
of boundary parallel annuli (which would not intersect corner orbits). Therefore
R has to intersect V in a union of meridian disks. Sections 3.5 and 3.6 of [Mo4]
then imply that the collapsing of pinched tetrahedra and torus pieces can be done
always transverse to the flow Φ3. The conclusion is fundamental for us:

Fact 1. The pseudo-Anosov flow Φ4 produced by Mosher’s construction is transverse
to G (and not just almost transverse).

Once we know this, we can now study orbits of Φ4. Every orbit of Φ2 in τ except
for α will intersect R transversely. Therefore, except for α, every orbit of Φ3 which
is entirely contained in N(τ) has to intersect R transversely. Since orbits of Φ4

are obtained by collapsing those of Φ3 together and the dynamics of Φ4 is entirely
encoded by the nonwandering set of Φ3 in N(τ) it now follows that:

Fact 2. Except for α, every orbit of Φ4 intersects R transversely.

Let Φ = Φ4 be the pseudo-Anosov flow thus constructed. Notice that α is a
closed orbit which does not intersect R. Since R is not a fiber of a fibration of M
over the circle, then Φ is not obtained as the suspension flow of a pseudo-Anosov
homeomorphism.

Theorem 8.1. Let M be as above, G a depth one foliation constructed as above
and Φ a pseudo-Anosov flow transverse to G constructed as above. Then the stable
and unstable foliations Fs,Fu of Φ are quasi-isometric singular foliations in M .
In addition leaves of G̃ ⊂ M̃ = H3 extend continuously to the sphere at infinity
S2
∞.

Proof. As seen before M is hyperbolic. Since Φ is a pseudo-Anosov flow transverse
to a Reebless finite depth foliation G in a closed hyperbolic 3-manifold, then we
proved in [Fe-Mo] that Φ is a quasigeodesic flow. Theorem 3.8 then shows that
Fs is a quasi-isometric singular foliation if and only if F̃s has Hausdorff leaf space.
Theorems 4.9 and 4.8 then show that if F̃s does not have Hausdorff leaf space, then
there are closed orbits γ1, γ2 of Φ (which may not be indivisible) so that γ1 is freely
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homotopic to the inverse of γ2; see the conclusion statement after these theorems.
The discussion following Theorem 4.9 shows that γ1, γ2 can be chosen so that there
are lifts γ̃1, γ̃2 to M̃ , satisfying: γ̃1, γ̃2 are the corner orbits of a lozenge B. Let us
check whether this is possible.

First suppose that γ1 intersects R. Then its intersection number with R is
positive and since γ2

∼= (γ1)−1 it follows that the intersection number of γ2 and
R is negative. This is impossible since R is transverse to Φ. Hence γ1, γ2 do not
intersect R and by fact 2 above, it follows that γ1 = αn, γ2 = αm, where nm < 0.
The free homotopy is realized by an element h ∈ π1(M) so that h[α]nh−1 = [α]m.
Since M is Haken this implies that |n| = |m| = 1 [Ja-Sh]. Then h2, [α] generate an
abelian subgroup of π1(M).

We can choose h so that h(γ̃1) = γ̃2. If h(B) ∩ B = ∅, then it is easy to see
that for any i 6= j ∈ Z, hi(B) ∩ hj(B) = ∅. Since [α](B) = B, it follows that h2, [α]
generate a Z⊕ Z subgroup of π1(M), a contradiction to M being hyperbolic. The
other option is that h(B) = B. This produces an orbit δ ⊂ B of Φ̃ so that h(δ) = δ.
Then W̃ s(δ) ∩ W̃u(γ̃1) 6= ∅ and is equal to an orbit δ′. But then h2(γ̃1) = γ̃1 and
h2(δ) = δ imply h2(δ′) = δ′. This produces two periodic orbits in Wu(α), also a
contradiction.

We conclude that F̃s has Hausdorff leaf space and consequently that Fs is a
quasi-isometric singular foliation; similarly for Fu. This proves the first assertion
of the theorem. Given that Fs,Fu are quasi-isometric and Φ is transverse to G,
then Theorem 7.1 proves that leaves of G̃ extend continuously to S2∞. This finishes
the proof.
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