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THE HONEYCOMB MODEL OF GLn(C) TENSOR PRODUCTS I:
PROOF OF THE SATURATION CONJECTURE

ALLEN KNUTSON AND TERENCE TAO

1. The saturation conjecture

A very old and fundamental question about the representation theory of GLn(C)
is the following:

For which triples of dominant weights λ, µ, ν does the tensor prod-
uct Vλ⊗Vµ⊗Vν of the irreducible representations with those high
weights contain a GLn(C)-invariant vector?

Another standard, if less symmetric, formulation of the problem above replaces
Vν with its dual, and asks for which ν is V ∗

ν a constituent of Vλ⊗Vµ. In this
formulation one can without essential loss of generality restrict to the case that λ,
µ, and ν∗ are polynomial representations, and rephrase the question in the language
of Littlewood-Richardson coefficients; it asks for which triple of partitions λ, µ, ν∗

is the Littlewood-Richardson coefficient cν∗
λµ positive.

It is not hard to prove (as we will see later in this introduction) that the set of
such triples (λ, µ, ν) is closed under addition, so forms a monoid. In this paper we
prove that this monoid is saturated, i.e. that for each triple of dominant weights
(λ, µ, ν),

(VNλ⊗VNµ⊗VNν)GLn(C) > 0 for some N > 0 =⇒ (Vλ⊗Vµ⊗Vν)GLn(C) > 0.

This is of particular interest because Klyachko has recently given an answer1 to the
general question above, which in one direction was only asymptotic [Kl]:

If Vλ⊗Vµ⊗Vν has a GLn(C)-invariant vector, then λ, µ, ν satisfy a
certain system of linear inequalities derived from Schubert calculus
(plus the evident linear equality that λ + µ + ν be in the root
lattice; in the L-R context this asks that the number of boxes
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1Klyachko gives a finite set of inequalities, that as a set are necessary and sufficient for this

asymptotic result. However, Chris Woodward has informed us that contrary to Klyachko’s un-
proven claim in [Kl], the inequalities are not independent – not all of them determine facets of
the cone. This will be the subject of inquiry of our second paper [Hon2].

c©1999 American Mathematical Society

1055

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1056 ALLEN KNUTSON AND TERENCE TAO

in the partition ν∗ is the number of boxes in λ and µ together).
Conversely, if λ, µ, ν satisfy these inequalities, then there exists
an integer N such that the tensor product VNλ⊗VNµ⊗VNν has a
GLn(C)-invariant vector.

Our saturation result completes this converse, saying that Klyachko’s inequalities
completely characterize the monoid. The survey papers [F, Ze] point out another
important consequence of these two results taken together: Horn’s conjecture [H]
from 1962, which gives a recursive system of inequalities, since the relevant Schu-
bert calculus questions can be cast as lower-dimensional Littlewood-Richardson
questions.

The main tool in this paper is the Berenstein-Zelevinsky cone [BZ, Ze], and in
particular the BZ polytope associated to the triple (λ, µ, ν), in which the number
of lattice points is the corresponding Littlewood-Richardson coefficient. We use a
new description of the BZ cone: the honeycomb model. (The reader who is willing
to grant Appendix 1 does not need to absorb separately the definition of the BZ
cone.) This is a special case of a general way of producing polyhedra that we dub
tinkertoy models. This viewpoint gives us natural ways to interpret faces of the
BZ polytope as associated to simpler tinkertoys. In addition, the Gel′fand-Cetlin
system fits in this theory as associated to a 1-dimensional tinkertoy.

The essence of the proof is as follows. We introduce a way of indexing (real)
points in the Berenstein-Zelevinsky cone by planar pictures called honeycomb dia-
grams; this identification is in Appendix 1. This rational polyhedral cone linearly
projects to the space of triples (λ, µ, ν) of (real) dominant weights of GLn(C).
By [BZ], the number of integral points (honeycomb diagrams whose vertices lie
at points in the triangular lattice) in a fiber of this projection is the dimension
(Vλ⊗Vµ⊗Vν)GLn(C). In order to work conveniently with honeycomb diagrams, we
introduce the seemingly richer notion of a honeycomb, since honeycombs can be
seen to naturally fit into a polyhedral cone. Then we prove the somewhat techni-
cal Theorem 1 that honeycombs are characterized by their diagrams (whose linear
structure is less apparent).

If for some large N we have

(VNλ⊗VNµ⊗VNν)GLn(C) > 0,

then the fiber over (Nλ, Nµ, Nν) of this linear projection contains a lattice point
and is thus nonempty. By rescaling we find that the fiber over (λ, µ, ν) is also
nonempty. So the question comes down to showing that a nonempty fiber over
an integral triple necessarily contains a lattice honeycomb. Equivalently, we want
a way of deforming a nonlattice honeycomb with integral “boundary conditions”
λ, µ, ν to a lattice honeycomb.

We do this by maximizing a linear functional, the “weighted perimeter”,2 on the
polytope of honeycombs with given λ, µ, ν. This picks out an extremal honeycomb,3

the “largest lift”, which we prove in Theorem 2 to have very nice properties if the

2One point easily missed is that an arbitrary choice is made in choosing this functional, making
the subsequent construction noncanonical – but since we only seek an existence proof, this is not
a problem.

3It was not a priori obvious that the lattice point we seek occurs as a vertex of the honeycomb
polytope. In particular, not all the vertices are at lattice points (see Figure 18). Nor was it plain
that a single functional could be used to pick them out uniformly for all λ, µ, ν. These facts are
side consequences of the proof.
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three weights are suitably generic. This theorem seems to be the useful one for
studying honeycombs, and will play an equally important role in the next paper in
this series [Hon2].

It is then straightforward to prove from its nice properties that the largest lift is
integral. A continuity argument handles the case of nongeneric triples of weights.
This ends the proof.

Not all of the framework presented in this paper is strictly necessary if one only
wishes to prove the saturation conjecture. In the very nice paper [Bu] a streamlined
version of our proof is presented, avoiding honeycombs in favor of the hive model4

(presented in Appendix 2), and in particular not requiring Theorem 1. However,
one consequence of Theorem 1 is that honeycombs have a very important operation
called overlaying which will be central for developments in later papers. In the
next in this series we will use the overlaying operation to study which of Klyachko’s
inequalities are in fact essential [Hon2].

We thank Chris Woodward for pointing out that the saturation conjecture gives
a new proof of the weak PRV conjecture for GLn(C), which states that Vwλ+vν

(for wλ + vν in the positive Weyl chamber) is a constituent of Vλ⊗Vµ. (This
“conjecture” is nowadays known to be true for all Lie groups [KMP].) In fact
one can do better, and without using saturation; in section 4 there is a canonical
honeycomb witnessing each instance of the long-proven “conjecture”, constructed
by overlaying GL1-honeycombs.

We mention very briefly some connections to algebraic and symplectic geometry
(much more can be found in [F, Ze]). By Borel-Weil, the space (Vλ⊗Vµ⊗Vν)GLn(C)

is the space of invariant sections of the (λ, µ, ν) line bundle on the product of
three flag manifolds. Given two nonzero invariant sections, one of the (λ, µ, ν) line
bundles and one of the (λ′, µ′, ν′), we can tensor them together to get an invariant
section of the (λ + λ′, µ + µ′, ν + ν′) line bundle. The geometrical fact that the
flag manifold (hence the product) is reduced and irreducible guarantees that this
tensor product section is again nonzero; this is why the set of triples (λ, µ, ν) with
invariant sections forms a monoid.

This same data is involved in defining a geometric invariant theory quotient
of the product of three flag manifolds by the diagonal action of GLn(C). The
space (VNλ⊗VNµ⊗VNν)GLn(C) is the Nth graded piece of the coordinate ring of
this quotient space. (Klyachko’s paper is a study of the semistability conditions
that arise in performing this quotient.) The BZ counting result then says that this
moduli space of triples of flags has the same Hilbert function as a certain toric
variety, and our saturation result says that the (by definition ample) line bundle on
this moduli space actually has sections. W. Fulton has shown us examples in which
this line bundle is not very ample. If one had an explicit degeneration of the moduli
space to the toric variety, one might be able to relate this non-very-amplitude to
the existence of nonintegral vertices on the corresponding polytope of honeycombs.

The symplectic geometry connection then comes from the “GIT quotients are
symplectic quotients” theorem [MFK, Chapter 8] (whose proof is essentially re-
peated in Klyachko’s paper, in this special case). In this case, the corresponding
symplectic quotient is the space of triples of Hermitian matrices with spectra λ, µ,

4The first version of this paper required the reader to absorb both models and switched view-
point back and forth. The paper [Bu] was inspired by that version, and took the approach of
eliminating honeycombs, rather than hives as is done here.
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1058 ALLEN KNUTSON AND TERENCE TAO

and ν which sum to zero, modulo the diagonal action of U(n):

(Fl(Cn)λ × Fl(Cn)µ × Fl(Cn)ν)//GLn(C)
∼={

(Hλ, Hµ, Hν) : eigen(Hα) = α, Hλ + Hµ + Hν = 0
}
/U(n).

In particular, this identification shows directly that the existence of a GLn(C)-
invariant vector in Vλ⊗Vµ⊗Vν implies the existence of a triple of Hermitian ma-
trices with zero sum. The reverse implication exactly amounts to the saturation
conjecture.

B. Sturmfels has pointed out that the “largest lift” construction can be inter-
preted as selecting a vertex of the fiber polytope [BS] of the projection from the cone
of honeycombs to the cone of triples of dominant weights. Combining this idea with
the hypothetical degeneration of the moduli space to the BZ toric variety, this sug-
gests that we might be able to alternately interpret the largest lift as picking out
a point in the Chow quotient [KSZ] of the product of three flag manifolds by the
diagonal action of GLn(C).

We thank Anders Buch, Bill Fulton, Bernd Sturmfels, Greg Warrington, and
Andrei Zelevinsky for careful readings and many cogent suggestions; we especially
thank Bill for correcting a number of historical inaccuracies in the early versions.

We encourage the reader to get a feeling for honeycombs by playing with the
honeycomb Java applet at

http://www.alumni.caltech.edu/~allenk/java/honeycombs.html.

2. Tinkertoys and the honeycomb model

We first fix a few standard notations.
A weight of GLn(C) is a list of n integers, and is dominant if the list is weakly

decreasing. So GLn(C)’s root lattice is the hyperplane of lists whose sum is zero.
The “graphs” in this paper are rather nonstandard; for us, a directed graph Γ is

a quadruple (VΓ, EΓ, head, tail) where the head and tail maps from the edges EΓ

to the vertices VΓ may be only partially defined – the edges may be semi- or even
fully infinite. In particular, any subset of the vertices and edges gives a subgraph,
where the domains of definition of the head and tail maps are restricted to those
edges that have their heads or tails in the subgraph.

For B a real vector space, let Rays(B) := (B−{0})/R+ denote the space of rays
coming from the origin. Each ray d is in a unique line R ·d. Topologically Rays(B)
is a sphere, SdimB−1.

2.1. Tinkertoys. We define a tinkertoy τ as a triple (B, Γ, d) consisting of a
vector space B, a directed graph Γ (possibly with some zero- or one-ended edges),
and a map d : EΓ → Rays(B) assigning to each edge e a “direction” d(e) in the
sphere.5

Example 1. Polytope tinkertoys. Any polytope P in B gives a natural tinker-
toy, just from the vertices, the edges (oriented arbitrarily), and their directions
d(e) := (head(e)− tail(e))/R+ ∈ Rays(B). For example, each rectangle in R2 with

5A related, though much more restrictive, definition has recently appeared in [GZ], in a context
quite related to the polytope tinkertoys in Example 1 following. In both cases, it is sort of
unnatural to fix an orientation on the graph – really it is the “orientation times the direction”
that comes into play.
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edges aligned with the coordinate axes gives us the same polytope tinkertoy (up to
isomorphism).

We define a configuration h of a tinkertoy τ as a function h : VΓ → B
assigning a point of B to each vertex, such that for each two-ended edge e

h(head(e))− h(tail(e)) ∈ d(e) ∪ {~0}.
More generally, we say h is a virtual configuration of τ if for each two-ended
edge e

h(head(e))− h(tail(e)) ∈ R · d(e).

The set of virtual configurations is a linear subspace of the vector space of all
maps VΓ → B. The set of configurations is a closed polyhedral cone in this subspace,
cut out by the conditions that the edges be of nonnegative length; we call it the
configuration space or cone of configurations of the tinkertoy τ . We can use
the vector space structure to define the sum h1 +h2 of two (virtual) configurations.

If B is endowed with a lattice, one can speak of lattice configurations of the
tinkertoy: these are the ones such that the map h takes VΓ to lattice points in B.

Example 2. Configurations of polytope tinkertoys (for cognoscenti of toric varieties
only – we neither use nor prove the statements in this example). In the case P a
convex lattice polytope such that the edges from each vertex give a Z-basis of the
lattice, there is an associated smooth toric variety, and the polytope tinkertoy is just
a way of encoding the (complete) fan of the polytope. The vector space of virtual
configurations of the corresponding polytope tinkertoy can be naturally identified
with the second equivariant cohomology group of the toric variety [GZ]; the cone of
actual configurations is then identified with the equivariant Kähler cone, and the
lattice configurations with the equivariant Chern classes of nef line bundles.6

We define a subtinkertoy (B, ∆, d|E∆) ≤ (B, Γ, d) as a tinkertoy living in the
same space B, with any subgraph ∆ ≤ Γ, and the same assigned directions d (re-
stricted to the subset E∆). We will not have much need for morphisms of tinkertoys,
but we do define an isomorphism between two tinkertoys (B, Γ1, d1), (B, Γ2, d2)
in the same space B as a correspondence between the two graphs, intertwining the
direction maps d1, d2.

Example 3. The Gel′fand-Cetlin tinkertoy. Let B = R, V = {vi,j} for 1 ≤ i ≤
j ≤ n, and E consist of two groups of edges {ei,j, fi,j}, each 1 ≤ i ≤ j ≤ n − 1.
Every edge is assigned the direction R+.

head(ei,j) = vi,j+1, tail(ei,j) = vi,j ,

head(fi,j) = vi,j , tail(fi,j) = vi+1,j+1.

One important subtinkertoy in this consists of the “primary” vertices {vi,n} and
no edges. The configurations of the Gel′fand-Cetlin tinkertoy restricting to a given
configuration of the primary vertices form a polytope called the Gel′fand-Cetlin
polytope. Each high weight of GLn(C) gives a (weakly decreasing) list of integers,

6In order to model line bundles on noncompact toric varieties using tinkertoys, we would need

a more ornate definition of tinkertoy including higher-dimensional objects than edges, and also a
more ornate definition of configuration, assigning affine subspaces to all objects in the tinkertoy
(not just to the vertices). These additional complications only serve to obscure the simplicity of
the tinkertoys actually used in this paper.
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1060 ALLEN KNUTSON AND TERENCE TAO

which we take as a lattice configuration of the primary vertices. The lattice points
in the Gel′fand-Cetlin polytope are called Gel′fand-Cetlin patterns, and they count
the dimension of the corresponding irreducible representation of GLn(C). Note that
not every configuration of the primary vertices can be extended to a configuration
of the whole Gel′fand-Cetlin tinkertoy – for this to be possible, the coordinates of
the primary vertices must be weakly decreasing.

Return now to the general case. If the two-ended edges e of a tinkertoy τ are all
of positive length in a configuration h, or equivalently

h(head(e))− h(tail(e)) ∈ d(e),

we call the configuration h nondegenerate.7 Otherwise we say that h is a degen-
erate configuration, each edge e with h(head(e)) = h(tail(e)) is a degenerate
edge of h, and each vertex attached to a degenerate edge is a degenerate ver-
tex of h. Note that not every tinkertoy has a nondegenerate configuration – for
example, make a tinkertoy with vertices x, y and two edges e, f from x to y with
different given directions d(e) 6= d(f).

The following proposition is of a type standard in convex geometry:

Proposition 1. If a tinkertoy τ has a nondegenerate configuration, then the non-
degenerate configurations form the interior of the cone of configurations, and every
configuration is a limit of nondegenerate ones. If τ doesn’t have any nondegenerate
configurations, there is some edge e that is degenerate in every configuration of τ .

It is worth noting that if h is a degenerate configuration of a tinkertoy τ , one
can associate a smaller tinkertoy τ̄ in which all the degenerate edges of h have been
removed, and any two vertices connected by a series of degenerate edges have been
identified; the configuration h then descends to a nondegenerate configuration of
this smaller tinkertoy. In this way each face of the cone of configurations can be
identified with the full cone of configurations of a smaller tinkertoy.

2.2. The relevant vector space B for this paper’s tinkertoys. From here on
out, all our tinkertoys are going to live in the same space R3∑

=0 := {(x, y, z) ∈ R3 :
x+y+z = 0}, a plane containing the triangular lattice Z3∑

=0. This plane has three
coordinate directions (0,−1, 1), (1, 0,−1), (−1, 1, 0), and each direction d(e) will
be one of these.

In particular, as one traverses the interval assigned to an edge by a configuration,
one coordinate remains constant while the other two trade off, maintaining zero
sum. We will call this the constant coordinate of the edge in the configuration.

Example 4. The GL2 honeycomb tinkertoy, in Figure 1. (This case is too small
to see why these are named “honeycombs”.) This tinkertoy has one vertex which
is the tail of three edges in the three coordinate directions, three vertices that are
each the head of three such edges, for a total of four vertices and nine edges (six of
which have no tails and are thus semi-infinite).

The constant coordinates on the six semi-infinite edges determine the config-
uration, and looking at the central vertex, we see that their sum must be zero.
This equality is only sufficient for the existence of a virtual configuration: any

7One last toric variety remark: in the context of the configurations of polytope tinkertoys, non-
degenerate lattice configurations correspond to ample line bundles on the corresponding projective
toric variety.
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Figure 1. A configuration of the GL2 honeycomb tinkertoy, the
vertices labeled with their coordinates in R3∑

=0. The lengths of
the two-ended edges are given at right, in terms of the separations
λ, µ, ν.

actual configuration will also satisfy the triangle inequalities on the separations
λ = λ1− λ2, µ = µ1−µ2, ν = ν1− ν2 between the pairs of semi-infinite edges going
in a coordinate direction.

There is a concise way to describe the set of integral coordinates λ1, λ2, µ1, µ2,
ν1, ν2 that arise in configurations of the GL2 honeycomb tinkertoy: they are exactly
those such that the tensor product V(λ1,λ2)⊗V(µ1,µ2)⊗V(ν1,ν2) of the corresponding
representations of GL2 contains an invariant vector. (Proof sketch: the requirement
that the sum be zero is equivalent to asking that the center of GL2 act trivially on
the tensor product. Then the triangle inequalities are familiar from SL2 theory.)
In these cases, the configuration is unique, and so too is the invariant vector (up to
scale).

Much of the rest of this section is about generalizing this example to general
GLn, which quite amazingly can also be performed in the plane R3∑

=0.

2.3. The infinite honeycomb tinkertoy, and GLn honeycomb tinkertoys.
As promised, B = R3∑

=0. Let V be the set of points8

V := {(i, j, k) ∈ Z3∑
=0 : 3 doesn’t divide 2i + j}.

For each vertex (i, j, k) ∈ V such that 2i + j ≡ 2 mod 3, put on three outwardly
directed edges, ending at the vertices (i−1, j +1, k), (i, j−1, k +1), (i+1, j, k−1).
These will be the vertices and edges of a directed graph Γ, in which every edge
is two-ended, and each vertex has three attached edges, either all in or all out
(depending on 2i + j mod 3).

The infinite honeycomb tinkertoy is then (R3∑
=0, Γ, d), where the direc-

tion d(e) of an edge is its direction (head(e) − tail(e))/R+, and the inclusion map
V ↪→R3∑

=0 defines a nondegenerate configuration of this tinkertoy; see Figure 2.

8This is sl3’s weight lattice minus its root lattice. Presumably there is a deep meaning to this
– perhaps relating to the A2 web diagrams in [Ku] – but we did not uncover it.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Figure 2. A small region in the standard configuration of the
infinite honeycomb tinkertoy. The six adornments on the boundary
show how the coordinates change as one moves in that direction.

Figure 3. The triangle in the infinite honeycomb tinkertoy con-
taining the GL4 honeycomb tinkertoy, and that tinkertoy on its
own.

The GLn honeycomb tinkertoy τn is the subtinkertoy of the infinite hon-
eycomb tinkertoy whose vertices are the (i, j, k) ∈ V contained in the triangle
j + 3n ≥ i ≥ k ≥ j (automatically in the interior), and all their attached edges.
This tinkertoy has 3n tailless edges; we will call these the boundary edges of this
tinkertoy. The n = 4 example can be seen in Figure 3.

There is a more general notion of honeycomb tinkertoy that we defer until sec-
tion 3.
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We call a configuration h of τn a honeycomb or τn-honeycomb. It is impor-
tant to distinguish the ontological levels here – the GLn honeycomb tinkertoy is
an abstract graph with some labeling by directions, whereas a honeycomb is the
additional data of an actual configuration of that tinkertoy in R3∑

=0.
Given a τn-honeycomb h, we can read off the constant coordinates on the 3n

semi-infinite edges starting from the southwest and proceeding clockwise.9 Denote
these λ1, . . . , λn, µ1, . . . , µn, ν1, . . . , νn, as in Figure 4; these are the boundary
conditions of the honeycomb.

Figure 4. The constant coordinates on the boundary edges of a
τ5-honeycomb. (The stars are the nonconstant coordinates.)

Let HONEY(τn) denote the cone of τn-honeycombs, and BDRY(τn) the cone of
possible boundary conditions (λ, µ, ν) of τn-honeycombs. That is to say, BDRY(τn)
is the image in (Rn)3 of the map h 7→ its boundary conditions λ, µ, ν.

Our purpose in introducing honeycombs is to calculate Littlewood-Richardson
coefficients, the dimensions dim(Vλ⊗Vµ⊗Vν)GLn(C). We do this by linearly relat-
ing τn-honeycombs to Berenstein-Zelevinsky patterns10 in an appendix, where we
establish the Z-linear equivalence of the Berenstein-Zelevinsky cone with the space
HONEY(τn).

That equivalence has the following consequence:

Theorem (from Appendix 1). Let λ, µ, ν be a triple of dominant weights of
GLn(C), and τn the GLn honeycomb tinkertoy. Then the number of lattice τn-
honeycombs whose semi-infinite edges have constant coordinates λ1, . . . , λn,
µ1, . . . , µn, ν1, . . . , νn as in Figure 4 is the Littlewood-Richardson coefficient
dim(Vλ⊗Vµ⊗Vν)GLn(C).

This generalizes the GL2 case we did before as Example 4.

9If our notion of “configuration” of a tinkertoy explicitly assigned lines in B to edges in EΓ,
not just to those with a head or tail, we could regard this as the restriction of a configuration
of the GLn honeycomb tinkertoy to the subtinkertoy consisting of the boundary edges and no
vertices.

10Gleizer and Postnikov have recently given a way of relating honeycomb configurations to
Berenstein-Zelevinsky patterns that is very different from ours [GP].
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Figure 5. The honeycombs computing the tensor square of
GL3(C)’s adjoint representation. N.B. the semi-infinite edges are
labeled with their constant coordinates – usually we will label them
with their multiplicities.

Example 5. In Figure 5 we calculate the tensor square of the adjoint representa-
tion of GL3. The corresponding Littlewood-Richardson rule calculation, throwing
away partitions with more than three rows, gives

V(2,1,0)⊗V(2,1,0) = V(4,2,0) ⊕ V ⊕2
(3,2,1) ⊕ V(4,1,1) ⊕ V(3,3,0) ⊕ V(2,2,2).

(Recall that to turn the S3-symmetric honeycomb formulation back into a tensor
product decomposition, one must reverse and negate the weight considered the
“output”.)

One elementary consequence of this theorem is that the sum of the constant
coordinates on the boundary edges is zero. (Proof: by linearity and continuity, it
is enough to check on lattice τn-honeycombs. On the representation theory side,
the sum of the constant coordinates gives the weight of the action of the center of
GLn(C), which must be trivial for there to be any invariant vectors. QED) We now
set up a more direct proof by a sort of Green’s theorem argument, proving some
other results in tandem.

For an edge e in the GLn honeycomb tinkertoy τn, let the closed interval Ih,e

be defined by

Ih,e :=
(
h(head(e))− R≥0 · d(e)

) ∩ (
h(tail(e)) + R≥0 · d(e)

)
•−→ ←−•

where if head(e) or tail(e) is undefined the corresponding term is omitted. (Note
that τn has no zero-ended edges, so this intersection is never over the empty set.)
Say that a curve H in R3∑

=0 intersects the configuration h transversely if H

contains no points h(v), and intersects each interval Ih,e transversely or not at all.

Lemma 1. Let τn be the GLn honeycomb tinkertoy,11 h a τn-honeycomb, and γ a
piecewise-linear Jordan curve in R3∑

=0 intersecting h transversely. For each edge
e let γe be the number of times Ih,e pokes through γ from the inside to the outside,
minus the number from the outside to the inside (the total12 will be 1, 0, or −1).

1. The sum over e ∈ E of the unit vectors in the directions d(e), weighted by γe,
is the zero vector.

2. The sum over e ∈ E of the constant coordinates on e, weighted by γe, is zero.

Proof. Since τn has its standard configuration, which is nondegenerate, by Propo-
sition 1 the nondegenerate τn-honeycombs are open dense in the cone of all τn-
honeycombs. The space of τ -honeycombs intersecting γ transversely is open in the

11This lemma applies word-for-word to the more general honeycomb tinkertoys defined in the
next section.

12This is also equal to the “number of heads of e landing inside γ minus the number of tails”
– a perhaps misleading phrase, since each number is only ever zero or one!
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Figure 6. Replacing a single Jordan curve by two, with the
dashed line as the shortcut.

space of all τ -honeycombs, and each of the functionals above is obviously piecewise
linear (and continuous) on it. Therefore the nondegenerate τ -honeycombs are open
dense in the ones intersecting γ transversely, and by continuity it suffices to check
the lemma for them.

If γ encloses one (or no) vertices the statement is easily checked. Otherwise we
can connect two points on γ by a path within the interior intersecting h transversely
and separating the vertices into two smaller groups (see Figure 6). This shortcut
gives us two new Jordan curves, γ1 and γ2. One checks that each of the above
functionals satisfies f(γ) = f(γ1) + f(γ2). By induction the two terms on the
right-hand side are zero, and therefore the left is also.

In particular, if we take our Jordan curve to be (a PL approximation to) a very
big circle, we recover the previous result that the sum of the constant coordinates
on the boundary edges is zero.

2.4. Eliding simple degeneracies. Recall from above that we call a tinkertoy
configuration h degenerate if some edge has length zero. This can be regarded as a
configuration of a simpler tinkertoy τ̄ , in which the two vertices collapsed together
have been identified (and the edge removed). The configuration map h : VΓ → B
descends to give a configuration h̄ of τ̄ . In this way the faces of a configuration
cone can be identified with configuration cones of simpler tinkertoys.

The case of interest to us is when a single edge of a honeycomb tinkertoy de-
generates to a point – or more generally, when no two degenerate edges share a
vertex. In this very special case there is an even simpler tinkertoy to consider,
where these five edges E, F, G, H, I and two vertices x, y are not replaced by four
edges E, F, H, I and one vertex x = y, but two edges E = I, F = H and no vertices
at all. (In particular, though E’s head/I’s tail x is removed, the identified edge
E = I gets the head r and tail p; similarly F = H gets the head s and tail q.)

We will call this modification of a tinkertoy eliding the edge G, or the vertices
x, y, or just eliding the singularity. A tinkertoy created by eliding a number of
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edges in a honeycomb tinkertoy we call a post-elision tinkertoy. Note that
there is no analogue of this for a degenerate edge in a general tinkertoy – it is
crucial that d(E) = d(I), d(F ) = d(H) so that the d map is well defined on the
post-elision tinkertoy. Note also that worse degenerations, as occur in the tensor
product calculation in Figure 5, do not usually allow the vertex to be removed.

We will say a honeycomb h has only simple degeneracies if no two degenerate
edges meet in a vertex. In this case we will typically elide the degenerate edges in
the sense of the paragraph above.

It is not readily apparent what the degrees of freedom of a tinkertoy are. How-
ever, for post-elision tinkertoys one can say something useful.

Lemma 2. Let τ be the GLn honeycomb tinkertoy.13 Let h be a τ-honeycomb,
some of whose degeneracies are simple, and let τ̄ be a post-elision tinkertoy obtained
by eliding some of h’s simple degeneracies, so h descends to a configuration h̄
of τ̄ . Let γ be a loop (undirected) in the underlying graph of τ̄ containing only
nondegenerate vertices of τ̄ (necessarily trivalent). Then there is a one-dimensional
family of configurations of τ̄ , starting from h̄, in which one moves only the vertices
in γ.

Proof. We can assume that the loop doesn’t repeat vertices; if it does, it will have
subloops that do not (in which case we will move a proper subset of γ’s vertices).

Orient the loop, and label the vertices with signs based on whether the loop turns
left or right at the vertex, as in Figure 7. Because of the angles, if all the left-turn
vertices move so as to shrink their nonloop edges by a fixed length ε, whereas the
right-turn vertices move so as to extend their outgoing edge by the same ε, the
angles remain unchanged – i.e. we have a new configuration.

Figure 7. Successive vertices turning the same direction, and in
opposite directions, and where they could move (dashed). The
signs indicate the change in length of the nonloop edge at the
vertex.

Note that no loop can go through semi-infinite edges. So in this previous lemma
we’re only studying degrees of freedom which leave the semi-infinite edges in place.
Also, because we can orient the loop either way, the loop can breathe both in and
out.

13Again, this lemma extends word-for-word to the general honeycomb tinkertoys defined later.
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3. The diagram and degeneracy graph of a honeycomb,

and reconstructing a honeycomb from its diagram

3.1. Honeycomb tinkertoys and honeycomb diagrams. For h a configuration
of a tinkertoy τ = (B, Γ, d), define the diagram mh of the configuration h to
be a measure on B, the sum

mh :=
∑

e∈EΓ

Lebesgue measure on the interval Ih,e.

This is a little more information than the set-theoretic union
⋃

e∈EΓ
Ih,e, in that it

remembers multiplicities when edges are directly overlaid. Note that we can recover
the union from mh, as its support supp mh.

In this section we will prove that a τn-honeycomb is reconstructible from its
diagram. There is a stronger statement – that every measure on R3∑

=0 that looks
enough like the diagram of a honeycomb is indeed the diagram of a unique hon-
eycomb (up to a trivial equivalence) – but it requires a more general definition of
honeycomb tinkertoy than the GLn honeycomb tinkertoys we have met so far.

Define a hexagon in the infinite honeycomb tinkertoy as the six vertices around
a hole, i.e. a 6-tuple of vertices (i − 1, j + 1, k), (i, j − 1, k + 1), (i + 1, j, k − 1),
(i + 1, j − 1, k), (i, j + 1, k − 1), (i− 1, j, k + 1) where 3 divides 2i + j.

Define a honeycomb tinkertoy τ as a subtinkertoy of the infinite honeycomb
tinkertoy satisfying five conditions:

1. τ is finite;
2. (the underlying graph of) τ is connected;
3. each vertex in τ has all three of its edges (which may now be one-ended);
4. τ contains a vertex (it’s not just a single no-ended edge);
5. if four vertices of a hexagon are in τ , all six are.

(It is slightly unfortunate to rule out the infinite honeycomb tinkertoy itself, but it
would be more unfortunate to have to say “finite honeycomb tinkertoy” through-
out the paper.) We will call the configuration of τ restricted from the defining
configuration of the infinite honeycomb tinkertoy the standard configuration of
τ .

A honeycomb tinkertoy has a number of semi-infinite edges in each of the three
coordinate directions and their negatives. Call this ordered 6-tuple, counted clock-
wise from the North, the type of the honeycomb tinkertoy. One fact we prove later,
in Lemma 6, is that any two honeycomb tinkertoys of the same type are isomorphic
– that the honeycomb tinkertoys presented in Figure 8 essentially capture all the
types. (In fact they are better than ‘isomorphic’; they differ only by translation
within the infinite honeycomb tinkertoy.) We give the more axiomatic definition
above to make it easy to check, in Lemma 7, that a certain subtinkertoy is itself a
honeycomb tinkertoy.

Figure 8. The standard configurations of some honeycombs. The
boundary edges are semi-infinite.
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If τ is a honeycomb tinkertoy, we define a τ-honeycomb h to be a configuration
of τ , and will speak of h’s type (meaning the type of τ). Just as in the case of the
GLn honeycomb tinkertoy τn, we use HONEY(τ) to denote the cone of τ -honeycombs,
and BDRY(τ) to denote the cone of possible constant coordinates on the set of one-
ended edges of τ .

It is quite easy to describe the local structure of the diagram of a (perhaps
degenerate) honeycomb h. In the pictures to follow of honeycomb diagrams we
label edges with their multiplicities (multiple of Lebesgue measure on the line).

Lemma 3. Let mh be the diagram of a honeycomb h. Each point b ∈ R3∑
=0 has a

neighborhood in which mh satisfies one of the following:
1. mh = 0.
2. mh is equal to a natural times Lebesgue measure on a coordinate line through

b.
3. mh matches one of the vertices in Figure 9, up to rotation (here the edge

multiplicities are naturals).
There are only finitely many points in the third class, the vertices of the hon-

eycomb diagram mh. If one thinks of each of the edges meeting a vertex as pulling
on the vertex with a tension equal to its multiplicity, these are exactly the ways for
the vertex to experience zero total force.

a
b

c

b+c

a+b

a a

a

a

a

b

b

ba a

a+b

a+c b+d

a+eb+ca+d

b+e

Figure 9. The Y, crossing, rake, 5-valent, and 6-valent vertices.

Proof. That the pictures in Figure 9 are the only possibilities, and the finiteness of
the number of points in the third class, each follow from the finiteness of the edge
set of a honeycomb tinkertoy (so the neighborhood can be shrunk to avoid the Ih,e

not actually meeting the point b), and the directions d(e) being multiples of 60◦

from the North. It remains to be sure the multiplicities are constrained as claimed.
By Lemma 1, the sum of the unit outgoing edges of a vertex (weighted by their

multiplicities) must be zero. So if both a direction and its negative appear with
positive multiplicity, we can subtract one from each and continue. Eventually we
must get to a vertex of the first type, Y, or nothing at all.

Each of the points b of the third class in the above lemma we will call a vertex
of the diagram mh.

To see that each of these vertex types actually occurs, start with the honeycombs
in Figure 8 (or larger versions with more hexagons) and degenerate all the two-
ended edges to points. As we will show in this section, collapsing the honeycombs
in Figure 8 is essentially the only way to produce the singular vertices in Lemma 9.

3.2. The dual graph D(τ) of a honeycomb tinkertoy τ . Call the lattice
{(i, j, k) ∈ Z3∑

=0 : 3 divides 2i + j} the root lattice (in that it is the root lat-
tice of sl3), and define the root lattice triangle around a vertex (i, j, k) of the
infinite honeycomb tinkertoy to be the three points of the root lattice at L1-distance
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Figure 10. A honeycomb tinkertoy τ of type (7, 0, 4, 5, 2, 2) in
solid lines and its corresponding D(τ) in dashed lines, shown su-
perimposed in R3∑

=0.

2 from (i, j, k) (these are the three closest points). We will need the small triangular
graph made from a root lattice triangle, and also the region enclosed.

Fix a honeycomb tinkertoy τ . Define D(τ), the dual graph of τ , to be the
union of the root lattice triangles around the vertices in τ – this has one vertex
in each region in the standard configuration of τ (including the unbounded ones),
with an edge connecting two D(τ)-vertices if the corresponding τ -regions share an
edge (see Figure 10 for an example). (In this way edges in D(τ) correspond to
perpendicular edges in τ .) In particular D(τ) is naturally embedded in R3∑

=0 – it
has more structure than just the abstract dual graph.

Lemma 4. Let τ be a honeycomb tinkertoy. Then the region bounded by its dual
graph D(τ) is convex, and is thus characterized (up to translation) by its 6-tuple
of edge-lengths. Conversely, every convex union of root lattice triangles arises as a
D(τ).

Proof. Each vertex in τ gives us three vertices in D(τ) (by either adding 1 to, or
subtracting 1 from, each of the three coordinates), and thus a small triangle. Two
connected vertices in τ share two of these three vertices, so their corresponding
triangles in D(τ) intersect in an edge (and not just a vertex).

Since τ is by assumption connected, any two of these triangles are connected by
a chain of triangles sharing common edges. This shows that D(τ) bounds a single
region, not a disconnected set, nor two regions intersecting in only a vertex.

It remains to prove this region is convex. If not, it has an internal angle of more
than 180◦ going around some boundary vertex. This would mean four successive
triangles out of the same vertex are in D(τ). On the τ side, that means four
successive vertices around a hexagon are in τ . But that forces the whole hexagon
to be in τ . So the vertex was not actually on the boundary, a contradiction. This
establishes the convexity of D(τ).

The converse is simple: given a convex union D of root lattice triangles which we
wish to realize as a dual graph D(τ), take τ to be the subtinkertoy of the infinite
honeycomb tinkertoy lying within D (those vertices, and all their edges). This is
easily seen to be a honeycomb tinkertoy whose dual graph D(τ) is D.

So the external angles are restricted to 0◦, 60◦, and 120◦. To rotate once, the
total of the external angles must be 360◦, so there are five types, depending on the
number and ordering of the two kinds of angles; see Figure 11.
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Figure 11. The possible shapes of the region bounded by a dual
graph D(τ).

Not any 6-tuple of edge-lengths will do; the boundary of D(τ) must be a closed
curve. This gives two linear conditions that exactly match the zero-tension property
of Lemma 3. So we’ve essentially classified the possible D(τ).

To get an equally good hold of τ , we need a lemma saying we can reconstruct τ
from D(τ). This will follow from a study of the length-minimizing paths connecting
two points in a honeycomb tinkertoy, which we dub geodesics. (Note that there
are typically a great many paths with this minimum length.)

The following lemma says that τ is “geodesically convex” inside the infinite
honeycomb tinkertoy.

Lemma 5. Let τ be a honeycomb tinkertoy, A, B two vertices of τ , and γ a geodesic
between A and B in the infinite honeycomb tinkertoy. Then the vertices of γ are
in τ .

Proof. We induct on the length of γ, assuming that the lemma is proven for all A
and B with geodesics shorter than γ.

Since τ is connected, A and B are connected under some path δ in τ . Let Ω be
the collection of hexagons enclosed by the concatenation γ + δ. We can assume the
cardinality of Ω is minimal among all possible paths δ in τ that connect A and B.
If Ω is empty, we are done, so suppose for contradiction that Ω is nonempty.

If γ + δ is not a Jordan curve, we can break it into smaller pieces and use the
induction and minimality hypotheses. Hence we may assume γ + δ is Jordan.

The curve δ cannot contain three consecutive edges of a hexagon in Ω; if it
did, then by property 4 required of honeycomb tinkertoys, all the vertices of this
hexagon would be in τ . Then we could “flip” δ to go around the other side of the
hexagon, which would remove that hexagon from Ω and contradict the minimality
assumption. Thus we may assume that δ does not contain three consecutive edges
of any hexagon in Ω.

To finish the contradiction we shall invoke

Sublemma 1. Suppose γ + δ is a Jordan curve whose interior Ω is a nonempty
collection of hexagons. Suppose further that δ does not contain three consecutive
edges of a hexagon in Ω. Then γ is longer than δ.

Proof. Suppose for contradiction that there was a counterexample γ + δ to this
sublemma. We may assume that this counterexample has a minimal number of
hexagons in Ω. We may assume that Ω contains more than one hexagon, since the
sublemma is clearly true otherwise.

From hypothesis, δ does not contain three consecutive edges of any hexagon in Ω.
We now claim that γ also does not contain three consecutive edges of any hexagon
in Ω. For, if γ did contain three such edges, one could then “flip” these edges
across the hexagon; this would preserve the length of γ and therefore contradict
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the minimality of Ω. (If the flip operation causes γ + δ to cease being Jordan,
eliminate redundant edges and divide into connected components.)

Now traverse γ + δ once in a counterclockwise direction, so that Ω is always to
the left. At every vertex one turns 60 degrees in a clockwise or counterclockwise
direction. From the above considerations we see that one cannot execute two con-
secutive counterclockwise turns while staying in the interior of δ, since this would
imply that δ contains three consecutive edges of a hexagon in Ω. Similarly one
cannot execute two consecutive counterclockwise turns while staying in the interior
of γ. Thus, with at most four exceptions, every counterclockwise turn in γ + δ is
immediately followed by a clockwise turn. But this contradicts the fact that we
must turn 360 degrees counterclockwise as we traverse γ + δ.

Since γ was assumed to be a geodesic, we have the desired contradiction.

Lemma 6. One can reconstruct a honeycomb tinkertoy τ from its dual graph D(τ):
its vertices are

{(i, j, k) ∈ Z3∑
=0 : 3 doesn’t divide 2i + j,

the root lattice triangle around (i, j, k) is in D(τ)}.
The number of semi-infinite edges of τ in a particular direction is equal to the
length of the corresponding edge of D(τ). In particular, honeycomb tinkertoys are
characterized (up to translation in the infinite honeycomb tinkertoy) by their type.

Proof. Each point in τ is in the set above, tautologically – a point in τ leads to the
three points in D(τ), which lead back to the same point being in the set above.

Now fix a triangle T in D(τ); we wish to show that the center of that triangle
is necessarily in τ . From a vertex in D(τ) one can infer that at least one of the six
neighboring points in {(i, j, k) : i + j + k = 0, 3 doesn’t divide 2i + j} is in τ . For
example, the presence of the dotted (North) vertex in Figure 12 says that up to
left-right reflection, there must be a τ vertex in one of the regions labeled 1, 2, 3
or 4.

If there’s a τ vertex in region 1, we’re done. If there’s a τ vertex in region 2 or
3, and another τ vertex producing the existence of the Southeast vertex of D(τ),
we can find (in Figure 13) a geodesic in the infinite honeycomb connecting the two
that goes through the center. Then by Lemma 5 about such geodesics, the center
is necessarily a vertex of τ .

12

3 4

Figure 12. Possibilities for the τ vertex causing the North D(τ)
vertex in this triangle.
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Figure 13. Geodesics through the center in cases 2, 3, and
through 2, 3 in case 4.

Figure 14. A very degenerate honeycomb h, and the correspond-
ing D(h).

The remaining case occurs when the only τ vertex can be found in region 4, in all
three rotations of the diagram. But then by connecting two of those τ vertices with
geodesics we find τ vertices in regions 2 and 3, reducing to the previous case.

3.3. The degeneracy graph D(h) of a honeycomb h. Fix a honeycomb tin-
kertoy τ , and let D(τ) be its dual graph. For h a τ -honeycomb, let D(h) be the
subgraph of D(τ) with the same vertex set but an edge between two vertices only
if the corresponding (perpendicular) edge of h is nonzero (see Figure 14 for an ex-
ample). This we will call the degeneracy graph of the honeycomb h (and is also
embedded in R3∑

=0).
Our goal is to classify the regions in D(h), and establish that they correspond to

vertices in the diagram of h, thereby classifying the possible vertices in the diagram
and their preimages under h (á la Figure 8).

Lemma 7. The regions in the degeneracy graph D(h) of a honeycomb h are convex.

Proof. Fix a region Ω in D(h), and choose a vertex x of τ which lies in the closure
of Ω. Then its image h(x) is in the support of the diagram of h.

Consider the subtinkertoy of τ consisting of those vertices in τ which map to h(x)
under h, together with their associated edges. Let σ be the connected component14

14Actually, we shall see in the next lemma that the tinkertoy necessarily has only one connected
component.
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2
3

2

2
2

2

X

Y

2
y

x

Figure 15. A straight line from region X to region Y in D(h),
and the corresponding path in h.

of this tinkertoy that contains x. Then σ is a honeycomb tinkertoy in its own right:
the only nontrivial observation required is that if four vertices of a hexagon map to
h(x), then all six vertices must map to h(x).

Chasing down the definitions we see that the region bounded by D(σ) is just Ω.
The claim then follows from Lemma 4.

Lemma 8. The regions in the degeneracy graph D(h) of a honeycomb h correspond
to the vertices in the diagram mh of h.

Proof. One direction is clear: if two vertices in τ give root lattice triangles in the
same region of D(h), those vertices are connected by a series of degenerate edges in
h, and therefore have collapsed to the same vertex of the diagram of h. So for each
region X in D(h), we can speak of X ’s h-vertex. The converse is more difficult; we
must show that two distinct regions X and Y in D(h) give vertices in the diagram
of h that are physically separated.

One case is easy. If X and Y are adjoining regions, then the existence of the edge
in D(h) separating them says that the corresponding edge in h is nonzero. But this
is exactly the displacement between X ’s h-vertex and Y ’s h-vertex, so they are in
different places, as desired. For nonadjoining X and Y we will have to add together
a bunch of such nonzero displacements and hope to get a nonzero sum.

Let x be a generic point in X , and y a generic point in Y , and let xy be the
straight-line path connecting them. Then xy does not intersect the vertices of D(h)
and only intersects the edges of D(h) transversely.

We can now compute the vector in R3∑
=0 separating the points in h corresponding

to the regions X and Y . Each time xy crosses a wall – an edge still left in D(h) –
there is an associated nonzero displacement, the vector difference of the h-vertices
of the regions on the two sides of the wall. Adding up all these displacements we get
the total vector difference we seek, the displacement of the vertices corresponding
to X and Y . (It is worth emphasizing that this gives a path in h itself, as indicated
in Figure 15.) But note now that each individual term has positive dot product
with the vector y− x, since it is perpendicular to the wall that xy has just crossed
through (and in the correct direction).

So therefore the whole sum has positive dot product with y−x, so is nonzero, and
therefore X ’s h-vertex and Y ’s h-vertex are not in the same place in the diagram.
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In particular, since the preimage of a vertex of a honeycomb is connected, it is
a honeycomb tinkertoy in its own right.

There is a succinct way to sum up the results of this section. Define an abstract
honeycomb diagram15 as a measure m on R3∑

=0 such that

1. in a neighborhood of each point b ∈ R3∑
=0, m is a nonnegative real linear

combination of the Lebesgue measures on the six coordinate rays out of b,
satisfying the zero-tension property of Lemma 3;

2. only finitely many points, which we naturally call the vertices of m, use more
than two rays in this combination;

3. supp m is not a collection of parallel lines.
By Lemma 3, the diagram of a honeycomb is an abstract honeycomb diagram.

The following theorem states that, up to a trivial ambiguity, every abstract honey-
comb diagram with integral edge-multiplicities is the diagram of a unique honey-
comb.

Theorem 1. Let m be an abstract honeycomb diagram with integral edge-multi-
plicities. Then m is the diagram of a configuration h of a honeycomb tinkertoy τ ,
where τ is uniquely determined by m up to unique isomorphism; and given τ the
honeycomb h is unique.

Proof. We break the diagram-to-honeycomb reconstruction into two steps: from
the diagram to the degeneracy graph, then from the degeneracy graph to the hon-
eycomb.

Finding the degeneracy graph D(h). We first need to determine the dual graph
D(τ) containing D(h). Since each of the vertices in m satisfies the zero-tension
property of Lemma 3, the whole diagram does, by the same Green’s theorem ar-
gument as in Lemma 1. Correspondingly, there does exist a convex lattice region
whose edge-lengths are the numbers of semi-infinite edges, unique up to translation.

By Lemma 8, the vertices in m are supposed to correspond to the regions in
D(h), and we can determine the shapes of those regions from Lemma 6. It remains
to fit them all together into D(τ).

For each vertex p in m, pick a path in supp m whose last vertex connects to
a semi-infinite edge. Each vertex along the path corresponds to a region in D(h)
whose shape we can determine from the vertex and Lemma 6. These regions glue
together along edges perpendicular to the steps in the path. We can determine
where the region corresponding to the last vertex in the path sits in D(h): we know
it’s on a boundary edge of D(h) (the boundary corresponding to the direction of
the semi-infinite edge), and we know where it sits on that edge, by counting how
many semi-infinite edges (with multiplicity) going in that direction are to the right
and left of this bunch. Having done that, by gluing the other regions to it we have
determined where they all sit, including that of the original vertex.

The only worry then is that different paths to the boundary may suggest different
places to locate p’s region inside D(h). One checks that there is no monodromy
in going around a small loop in the embedded graph supp m – this is because the
hexagon-closure condition of a small path is the same as the zero-tension condition
of Lemma 3 – and therefore none in any loop.

15This concept matches the web functions of [GP]; we prefer to avoid this terminology, though,
for fear of confusion with the intriguingly similar ‘webs’ of [Ku]. A. Postnikov of [GP] has informed
us that he also knew Theorem 1.
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Finding the honeycomb tinkertoy τ and the honeycomb h. From D(τ), using
Lemma 6 we can construct τ uniquely. Had D(τ) been chosen differently, τ would
only change by translation within the infinite honeycomb tinkertoy.

We’ve determined D(h)’s breakup into regions, and which vertex in p corresponds
to which region in D(h). But this determines the honeycomb h – for each vertex
v of p, take the vertices of τ in the interior of the D(h)-region corresponding to v
and map them to v under h.

The degeneracy graph D(h) is thus a way of recording only what we might call
the combinatorial information about a honeycomb h, not the actual positions. (In
fact there is a tighter connection: see Appendix 2.) The vertices of one correspond
to regions in the other, and the length of an edge of D(h) is equal to the multiplicity
of the corresponding (perpendicular) edge in h.16

This theorem allows us to work pretty interchangeably with honeycombs vs.
honeycomb diagrams. In particular we can strengthen the result of Lemma 2,
which only gave us a family of configurations of post-elision tinkertoys τ̄ made
from honeycomb tinkertoys τ , to actually give us configurations of τ itself.

Corollary. Let h be a τ-honeycomb, and let τ̄ be a tinkertoy obtained by eliding
some of h’s degenerate edges, so h descends to a configuration h̄ of τ̄ . Let γ be a
loop (undirected) in the underlying graph of τ̄ passing only through nondegenerate
vertices of h̄. Then there is a one-dimensional family of configurations of τ , starting
from h, in which one moves only the vertices in γ.

Proof. Apply Lemma 2 to get a family of configurations of τ̄ , and apply Theorem
1 to their diagrams; this produces configurations of τ .

This is most interesting when breathing the loop in and out causes a vertex of
the post-elision tinkertoy τ̄ to move across an edge, as in Figure 16, something
not possible for the honest honeycomb tinkertoy τ . In this case, the application
of Theorem 1 to the 1-dimensional family of τ̄ configuration diagrams produces a
piecewise-linear 1-dimensional family of τ -honeycombs that bends around the cone
HONEY(τ).

Figure 16. Two members of a bent family of GL4 honeycombs
and their degeneracy graphs, resulting from breathing a hexagon in
their common post-elision tinkertoy. Since their degeneracy graphs
are different, the honeycombs lie on different faces of the cone of
honeycombs.

16If the edges of D(h) are given formal multiplicities equal to the length of the corresponding
edge in h, the graph D(h) becomes a honeycomb diagram itself (ignoring here the problem of
dealing with the semi-infinite edges). This is essentially the duality in [GP] on BZ triangles; see
also the remarks at the end of the next section.
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4. Overlaying honeycombs, and the PRV conjecture

The reconstruction theorem of the last section lets us define a remarkable oper-
ation on honeycombs. (This section is not used elsewhere in this first paper.)

Corollary (to Theorem 1). Let h and h′ be two honeycombs (perhaps of different
types). Then (up to translation in the infinite honeycomb tinkertoy) there exists
uniquely a honeycomb whose diagram is the sum of the diagrams of h and h′ (as
measures; one adds multiplicities when the edges of h and h′ lie fully on top of one
another).

Proof. Let m be the sum as a measure of the diagrams of h and h′. One checks
straightforwardly that m is an abstract honeycomb diagram with integral edge-
multiplicities, except for connectedness.

If supp m is not connected, there is a connected component C of R3∑
=0 \ supp m

bounded by two different components of suppm. The region C is not convex and
bounded, or else its boundary would have just one (polygonal) component. If C
is not convex it must be nonconvex at one of its vertices, violating Lemma 3’s
zero-tension condition on m’s vertices, a contradiction.

So C is convex and unbounded, hence its limit points in the circle at infinity
Rays(R3∑

=0) must either be an interval or two opposite points. If this is an interval,
C’s boundary is connected, a contradiction. So C contains a line, and its boundary
in supp m must be two parallel lines. By the zero-tension condition on honeycomb
vertices, there can be no vertices on these lines. Removing them, and repeating
the argument, we find that h and h′ are each unions of parallel lines, contrary to
assumption.

So we have the assumed connectedness, and m is an abstract honeycomb dia-
gram. Then by Theorem 1 it is the diagram of an essentially unique honeycomb.

The naturality of this piecewise-linear operation on honeycombs is, to our minds,
one of the principal advantages over the BZ formulations, and will be central in the
next paper [Hon2]. (In this paper the overlay notion is only used in a sort of local
way – the elision operation on simple degeneracies.)

Application: the weak PRV conjecture for GLn(C). The so-called weak PRV
conjecture (now proven in general [KMP]) states that if wλ + vµ is in the positive
Weyl chamber for some Weyl group elements w, v, then Vwλ+vµ is a constituent of
the tensor product Vλ⊗Vµ. We prove this for GLn(C) as follows. For i ∈ {1, . . . , n},
let hi be a GL1-honeycomb, i.e. a single vertex with three semi-infinite edges coming
off, whose coordinates are (λw(i), µv(i),−λw(i)−µv(i)). Then overlaying all the {hi},
we get a lattice GLn-honeycomb with boundary conditions λ, µ, and −(wλ + vµ).
This lattice honeycomb is a witness to this instance of the weak PRV conjecture
(see Figure 17 for an example).

The cost of working in the honeycomb model is that the linear structure – the fact
that one can add two BZ patterns of the same size and get another – is geometrically
a slightly more mysterious operation on honeycombs. As we will see in a later
paper in this series, these two operations “add” and “overlay” are intertwined by
the duality operation on honeycombs from [GP], which should be seen as a tropical
version of the Fourier transform relating “times” and “convolve”. On honeycombs
this operation essentially amounts to replacing a honeycomb h with its degeneracy
graph D(h), where each edge of D(h) is given a formal “multiplicity” equal to
the length of the corresponding edge in h (thus completing the duality of the two
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Figure 17. An example of a witness to the PRV conjecture.

graphs). We leave the additional details of how to handle the semi-infinite edges to
the later paper.

5. The largest-lift map BDRY(τ)→ HONEY(τ)

In Figure 18 we see a honeycomb with integral boundary that is not itself integral.
It is a little more difficult to see that it is in fact an extremal point on the polytope of
honeycombs with this boundary, i.e., the constant coordinates on the interior edges
are uniquely determined unless one un-degenerates some zero-length edges. The
reader can check this by using the fact that the diagram is in R3∑

=0 to determine
the constant coordinates on all the edges except those in the figure eight; then the
fact that the line passes through the node on the figure eight ties down the rest of
the coordinates.
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Figure 18. A nonintegral vertex of a honeycomb polytope, with
edges (all multiplicity one) labeled with their constant coordinates.
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It will turn out that, in a sense, the 6-valent vertex is to blame for this honey-
comb’s bad behavior. In this section we develop the machinery to find extremal
honeycombs with better vertices (and thus better behavior) than this one.

Let P be a (possibly unbounded) polyhedron in a vector space U , π : U � V a
projection that restricts to a proper map P � Q, and ~w a generic functional on U .
Define the “largest lift” map l : Q→ P , taking q to the point in P ∩π−1(q) with
greatest pairing with ~w. By properness, there is a point maximizing this pairing;
by genericity of ~w, this point is unique. So the map is well-defined, and in fact
is continuous and piecewise-linear ([Zi, pp. 293-4]). In the case of P a tortoise,
Q its shadow on the ground at noon, and ~w measuring the height off the ground,
the largest lift of a point in the shadow is the corresponding point on the tortoise’s
upper shell.

Fix a honeycomb tinkertoy τ . We are interested in this largest-lift map in the
case of the projection HONEY(τ)→ BDRY(τ), which forgets the location of the vertices
and finite edges of a honeycomb, remembering only the constant coordinates on the
boundary edges.

Proposition 2. Let τ be the GLn honeycomb tinkertoy. Then the map HONEY(τ)→
BDRY(τ) is proper.

Proof. This is guaranteed by the correspondence with the BZ cone (in Appendix
1).

In fact this map is improper only if τ has semi-infinite edges in all six directions,
but we will not need this fact in this paper.

The functional wperim : HONEY(τ) → R is chosen to be a generically weighted
sum of the perimeters of the (possibly degenerate) hexagons in the honeycomb, the
weighting having a certain “superharmonicity” property. More exactly, let w assign
a real number to each of the regions in the tinkertoy τ (vertices of D(τ)), with the
properties that

1. for each unbounded region r on the exterior, w(r) = 0;
2. for each hexagon α surrounded by regions αi, w(α) > 1

6

∑
i w(αi);

3. w is chosen generic, subject to these constraints.
(One nongeneric such w can be defined on any D(τ) by w(i, j, k) = −i2−j2−k2.

But the set of w is open, so we can perturb this one slightly to get a generic w.)
Then we define the weighted perimeter of a τ -honeycomb h as

wperim(h) =
∑

hexagons α

w(α) perimeter(α).

Since wperim is defined in terms of the perimeter, it’s a linear functional on
HONEY(τ).

Lemma 9. Let h be a honeycomb in which some hexagon can inflate (moving the
vertices of the loop, as in Lemma 2). Then inflating it increases wperim(h).

Proof. Inflating the hexagon by distance ε increases its perimeter by 6ε, while de-
creasing that of each of its neighbors by ε (see Figure 19). The change in wperim(h)
is

6gε− (a + b + c + d + e + f)ε = (6g − (a + b + c + d + e + f))ε > 0.
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Figure 19. An inflating hexagon, with each region α labeled with
its weight w(α).

This lemma is best understood in terms of HONEY(τ)’s linear structure, which
while transparent in the original BZ formulations, or the hive model in Appendix
2, is unfortunately rather opaque in the honeycomb model. For each region R in
a honeycomb tinkertoy τ , define the inflation virtual configuration ~iR which
places the vertices of R around the origin in R3∑

=0 (by translating the hexagon
containing R’s vertices to the hexagon in the infinite honeycomb tinkertoy around
the origin), but all other vertices at the origin. Then the statement “the hexagon
H can inflate in h, but gets stuck at a distance s” is equivalent to “h + ε~iH is in
the cone HONEY(τ) for ε ∈ [0, s], but past s this ray leaves the cone”. And Lemma
9 above is exactly the statement (if we extend wperim linearly to the vector space
of virtual configurations of τ) that wperim(~iR) > 0.

In a particularly degenerate honeycomb it may be impossible to inflate any one
hexagon; only certain combinations may be possible. This next slightly techni-
cal lemma shows that certain local changes to a honeycomb, which molt17 the
degeneracy, can be obtained by inflating several hexagons simultaneously.

Lemma 10. The virtual configurations associated to the recipes in Figure 20 for
molting a degenerate vertex are in each case the sum of a set of inflation virtual
configurations ~iR associated to inflating a certain collection of regions R. More
precisely, each molting recipe inflates equally the completely degenerate hexagons,
plus the 4-sided regions on the sides corresponding to thick edges.

Proof. Since these degenerate vertices involve, by definition, a number of hexagons
that have collapsed (to lines and even to points), it is rather difficult to see which
hexagons must be simultaneously inflated to make the vertex molt. We will use
the linear structure to get around this as follows; first add ε times the standard
configuration of the honeycomb tinkertoy τ . Now there is no degeneracy and we can
point out which regions to inflate. Add the corresponding virtual configurations
~iR to this configuration. Then subtract ε times the standard configuration and see
that we do get the molted configuration.

Note in particular that if we mark two adjacent regions for the same amount of
inflation, their common edge doesn’t move at all. So it is simple to see whether
an edge moves under simultaneous inflation, since each edge is on the boundary of
exactly two regions; it moves if exactly one of them inflates, away from that one.

17From Webster’s: molt : to shed hair, feathers, shell, horns, or an outer layer periodically :
to cast off (an outer covering) periodically; specif : to throw off (the old cuticle).
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Figure 20. How to “molt” a degenerate vertex.
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Figure 21. From left to right: a Y vertex; that vertex expanded
with some regions marked for inflation (in gray); the result of in-
flation; then de-expanded again.

In each of the following pictures we show

1. the vertex (edges labeled with their multiplicities);
2. the standard configuration of (a small example of) the underlying tinkertoy,

with certain regions labeled in gray;
3. the result of inflating those regions some distance;
4. the same result, with the standard configuration subtracted off.

Molting a Y vertex (Figure 21). We determined in Lemma 6 that Y vertices
result from the collapse of a (0, n, 0, n, 0, n)-type honeycomb tinkertoy. To perform
the sort of molt we want here, we inflate all the regions except one corner and the
opposite side.

Molting a crossing vertex (Figure 22). In this case we inflate all regions except
those on the left and right side. Again, we are using Lemma 6 to know precisely
what is hiding in the degenerate vertex, as we will again in the remaining cases.

Molting a rake vertex (Figure 23). In this case we inflate all regions except those
on the left, right, and top.

Molting a 5-valent or 6-valent vertex. This is more of the same, so we do not
take space for the pictures (see Figure 8 for the standard configurations of the
tinkertoys). In both the 5- and 6-valent case, we mark all the hexagons for inflation,
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Figure 22. Molting a crossing vertex by inflating certain regions.
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Figure 23. Molting a rake vertex by inflating certain regions.

and in the 5-valent case we also mark for inflation the 4-sided unbounded regions
on the side with m external edges.

Note that we make no statement here about the change in the weighted perime-
ter, since (except in the 6-valent vertex case) some of the regions we are inflating
are unbounded, and Lemma 9 does not pertain. In the theorem to follow we will
only be inflating hexagons.

For τ a honeycomb tinkertoy, call β ∈ BDRY(τ) a set of regular boundary condi-
tions if no two semi-infinite edges of τ in the same direction are assigned the same
constant coordinate. This terminology is taken from the GLn-honeycomb case,
where such boundary conditions correspond to triples of regular dominant weights
(i.e. in the interior of the positive Weyl chamber).

The main result in this paper is the following.

Theorem 2. Let τ be a honeycomb tinkertoy such that the map HONEY(τ) →
BDRY(τ) is proper, as in Proposition 2. Let β be a regular point in BDRY(τ), and
l(β) the largest-lift honeycomb lying over it (relative to a generic choice w). Then
l(β) has only simple degeneracies, and if one elides them, the graph underlying the
resulting tinkertoy is acyclic.

Proof. Since the map is assumed proper, the concept of a “largest lift” makes sense,
and we can go on to study its properties. In order, we will show

1. a largest lift never has 6-valent vertices;
2. a largest lift of a regular point has no edges of multiplicity > 1 (and therefore

no rakes or 5-valent vertices);
3. a simply degenerate largest lift has no cycles.
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Figure 24. Replacing a multiplicity-m path with a multiplicity-
(m− 2) path while molting a multiplicity-1 skin.

Item #1 is immediate from Lemma 10: if l(β) has a 6-valent vertex, we can
molt it by inflating a certain set of hexagons. But by Lemma 9 that increases the
weighted perimeter. So l(β) was not a largest lift, contrary to assumption.

Example 6. In the calculation of the tensor square of GL3(C)’s adjoint represen-
tation in Figure 5, we found that two copies of the adjoint representation (tensor the
determinant) appear. One of them has a 6-valent vertex and is thus not a largest
lift. When that vertex “molts” as explained above (and the resulting hexagon is
maximally inflated), one obtains the other honeycomb with the same boundary,
which is a largest lift.

Proof of #2. Let m be the maximum edge-multiplicity that appears in h; assume
m > 1 or else we’re done. Let Γ be the subgraph of supp mh of the edges with
multiplicity m (and their vertices). By the assumption that β is regular, this
contains none of the semi-infinite edges; it is bounded. Let x be a vertex on the
boundary of the convex hull of Γ; x is necessarily a rake or a 5-valent vertex.

Build a path γ in Γ starting at x, with first edge e, as follows. Declare the direc-
tion 60◦ clockwise of e to be the “forbidden” direction, and 30◦ counterclockwise
to be “windward”.

Now traverse edges, coming to new vertices, going through crossings, turning at
Y’s (but not into the forbidden direction), stopping when you reach another rake
or 5-valent vertex. (Conceivably one might continue through a 5-valent vertex, if
it is lucky enough to have two edges of multiplicity m, but we don’t do this.) Once
you start building this path from x, e, there are no choices, and each step carries
us a positive distance in the windward direction. So the path doesn’t self-intersect,
and since the graph is bounded, this algorithm must terminate. By the assumption
that m was the maximum edge-multiplicity, we only come into a rake or 5-valent
along the edge labeled m in Lemma 10 (up to rotation and reflection).

We now attempt to simultaneously inflate all the hexagons that have completely
degenerated to the vertices along γ, plus those that have collapsed to the edges
connecting two vertices. Comparing this to the recipes in Lemma 10, we see that
this exactly molts all the vertices, and is thus a legal combination (adding a small
multiple doesn’t carry us out of the cone HONEY(τ)). This operation inflates some
hexagons, and therefore by Lemma 9 increases the weighted perimeter, violating
the largest-lift assumption as before.

We give an example of this in Figure 24, where an entire path γ molts. This
illustrates how the recipes for molting at a vertex exactly fit together to give a
well-defined operation on the honeycomb.

Proof of #3. Now that we know that our largest lift of a regular triple only has
simple degeneracies, we can apply Lemma 2 (or rather, its strengthened version
in the corollary to Theorem 1) to say that any cycle in the graph underlying the
post-elision tinkertoy gives a degree of freedom. But by the assumed genericity of
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w, our honeycomb should be at a vertex of the polytope of honeycombs lying over β,
and thus have no degrees of freedom. Hence there are no cycles in the post-elision
tinkertoy.

Honeycombs with nonsimple degeneracies can be seen in Figure 5 – but only when
the bottom edge has some edges lying on top of one another, or the honeycomb is
not a largest lift.

6. Proof of the saturation conjecture

We prove a general honeycomb version of the saturation conjecture. Then we
derive the actual representation theory saturation conjecture from its truth for
GLn-honeycomb tinkertoys.

Theorem 3. Let τ be a honeycomb tinkertoy such that the projection HONEY(τ)→
BDRY(τ) is proper, and let w be a generic weighting function on the regions satisfying
the properties required in section 5. Then the largest-lift map BDRY(τ)→ HONEY(τ)
is a piecewise Z-linear map. Consequently, any point in BDRY(τ) assigning integer
constant coordinates to the boundary edges can be extended to a lattice honeycomb.

Proof. We already know that the largest-lift map is continuous, and linear on cham-
bers. We will show by studying regular points in BDRY(τ) that each of these linear
maps has integer coefficients. Then for any point in BDRY(τ), even nonregular, we
can pick a chamber of which that point is on the boundary, and show that over
that point there lies a lattice honeycomb.

If β is a regular configuration in BDRY(τ), then by Theorem 2 from section 5, the
largest-lift honeycomb l(β) has only simple degeneracies (its vertices only look like
Y’s or crossing vertices, with edge-multiplicity 1 everywhere).

By the “elision” construction in section 2, we can regard this as a nondegener-
ate configuration of a simpler post-elision tinkertoy, where each crossing point is
removed, and the five edges (one of length zero) replaced by the two lines going
through.

In this tinkertoy, each vertex is degree 3, touching some finite and some semi-
infinite edges. Consider the subgraph of finite edges, also acyclic, and inductively
pull off vertices of degree 1. Each such vertex is connected to two semi-infinite edges,
whose constant coordinates determine the location of the vertex. In particular the
constant term on the finite edge coming out is integrally determined by those on
the two semi-infinite edges – it is minus their sum.

So we can remove the two semi-infinite edges and the vertex, promoting the
remaining edge to semi-infinite, and recurse. Eventually all the coordinates are
integrally determined from those on the original semi-infinite edges.
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Figure 25. A honeycomb tinkertoy whose largest lift shows where
to find an invariant vector in a 7-fold tensor product.

(We invite the reader to see how this argument fails on the honeycomb in Figure
18.)

It may be worth noting that one can make these integral formulae very explicit.
To determine the constant coordinate on a two-ended edge e somewhere in the
middle of this honey-forest l(h), let eY be the set of semi-infinite edges f such that
there is a path (necessarily unique) from f to e going through e’s right-side-up Y
vertex. (Unless the post-elision tinkertoy is disconnected, the unique path from f
to e will go either through e’s Y vertex or e’s upside-down Y vertex.) Then the
constant coordinate on e is the sum of the constant coordinates on the outgoing
boundary edges in eY, minus the corresponding sum on the incoming edges.

Corollary (the saturation conjecture). Let (λ, µ, ν) be a triple of dominant inte-
gral weights of GLn(C) such that for some N > 0, the tensor product VNλ⊗VNµ⊗
VNν has a GLn(C)-invariant vector. Then already Vλ⊗Vµ⊗Vν has a GLn(C)-
invariant vector.

Proof. Let τn be the GLn honeycomb tinkertoy. By Theorem 4 from Appendix
1, the fiber of the boundary-conditions map HONEY(τn) → (Rn)3 over the point
(Nλ, Nµ, Nν) contains a lattice point, and is therefore nonempty. Therefore the
fiber over (λ, µ, ν) is also nonempty, since it is just the original fiber rescaled by
1/N . By Proposition 2 we can apply Theorem 3, which says that this fiber contains
a lattice point. Using Theorem 4 again, we find that Vλ⊗Vµ⊗Vν has a GLn(C)-
invariant vector.

There is an analogous saturation conjecture for the tensor product of any number
of representations, which for our purposes we can state as follows. Let {λi}i=1,...,m

be a collection of dominant weights such that for some large N , the tensor product⊗
iVNλi has a GLn(C)-invariant vector. Then the same is true when N is replaced

by 1.
An earlier version of this paper had a technically unpleasant proof of the general

saturation conjecture. We omit the details, because since writing this paper, An-
drei Zelevinsky has shown us how to derive the general saturation result from the
case already proven, via standard arguments with the Littlewood-Richardson rule
[Ze]. The basic idea of the omitted proof is indicated in Figure 25, which shows a
honeycomb tinkertoy whose largest lifts give witnesses to saturation in the case of
a seven-fold tensor product.
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As long as the inputs λi are pulled apart sufficiently (x→∞), a configuration of
this big honeycomb tinkertoy corresponds 1:1 to a ‘coherent’ set of (0, n, 0, n, 0, n)
honeycombs (they are far enough apart to necessarily not overlap when glued to-
gether into a configuration of the big honeycomb tinkertoy). That and repeated
application of the isomorphism

(A⊗B)GLn(C)∼=
∑

µ

(A⊗Vµ)GLn(C)⊗(V ∗
µ⊗B)GLn(C)

(where µ runs over all irreducible representations of GLn(C)) let us locate a lattice
point in the analogous Berenstein-Zelevinsky polytope.

7. A saturation conjecture for other groups

One can phrase a näıve saturation conjecture for other groups G: for any triple
(λ, µ, ν) of dominant weights for G, if there exists a number N such that

(VNλ⊗VNµ⊗VNν)G > 0, then (Vλ⊗Vµ⊗Vν)G > 0.

However, this conjecture is false, with counterexamples reported in [E]. A clue is
provided by the fact that it is already false for G = SLn(C)!

Of course, the SLn(C) case is not so different from the GLn(C) case, where sat-
uration holds, and so is easily patched up; we must ask also that the representation
λ + µ + ν of the torus annihilate the center of SLn(C). (This is no longer a linear
condition on λ + µ + ν, as it was for GLn(C), exactly because SLn(C)’s center is
not connected.)

Conjecture. Let G be a connected complex semisimple Lie group with maximal
torus T , (λ, µ, ν) a triple of dominant weights for G, and N a positive number such
that

(VNλ⊗VNµ⊗VNν)G > 0.

Then if λ + µ + ν annihilates all elements of T with semisimple centralizer,

(Vλ⊗Vµ⊗Vν)G > 0.

We now explain the geometric motivation for this conjecture. Since our only
goal is to make the conjecture plausible we do not waste space on full proofs of the
statements made here.

The space (Vλ⊗Vµ⊗Vν)G can be thought of as the space of sections of a sheaf
on the GIT quotient (G/B)3//G (as explained in the introduction, in the case of
G = GLn(C)). However, this sheaf may not necessarily be a line bundle; it can
have singularities that get worse at orbifold points of the quotient, and any section
is required to vanish at the singularities. The condition that λ+µ+ν annihilate the
center exactly guarantees that this sheaf be a line bundle generically, so is certainly
necessary for the existence of nonvanishing sections.

However, if the sheaf has singularities along which any section must vanish, it
stands to reason that global sections are less likely to exist. The condition in the
conjecture is exactly equivalent to asking that the sheaf be a line bundle globally,
therefore to have a better chance to have sections.
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To be sure, this conjecture is not nearly as satisfactory as the result for GLn(C)
(primarily because it’s not necessary, only claimed to be sufficient), but the situation
for other groups seems to be inherently less clean.

1. Appendix: The equivalence of GLn-honeycombs

with a definition of Berenstein-Zelevinsky patterns

Let η be a hexagon with 120◦ angles and two vertical edges. Define the torsion
of η to be the length of the left edge minus that of the right edge.

Proposition 3. The torsion of η and that of each 120◦ rotation of η agree.

Proof. For a regular hexagon they are all zero. If one translates one edge of η out
from the center, the edge shrinks and its two neighboring edges grow, keeping the
torsions equal. Any position of the hexagon can be achieved by composing such
translations.

Let h be a GLn-honeycomb. We will assign a number to each region in the GLn

honeycomb tinkertoy τn, other than the sectors at the three corners, using h. This
will turn out to be a Berenstein-Zelevinsky pattern.

1. Each hexagon is assigned its torsion.
2. Each semi-infinite wedge on the NE long edge of the honeycomb is assigned

the length of its west edge.
3. Each semi-infinite wedge on the NW long edge of the honeycomb is assigned

the length of its SE edge.
4. Each semi-infinite wedge on the bottom long edge of the honeycomb is as-

signed the length of its NE edge.
(This is set up so as to be 120◦-rotation invariant.)
For any region not on the NW long edge, the sum of the region-entries at and to

the right of that point telescopes to the length of an edge, necessarily nonnegative.
(Likewise for 120◦ rotations.)

To determine the sum across an entire row is a little trickier. We need to relate
the length of an edge to the constant coordinates on neighboring edges. Rotate the
edge to align it with the finite edge in Figure 26.

So the sum across an entire left-right row, with a semi-infinite wedge at the left
end, is

1. the sum of the lengths of the two finite edges of that wedge;
2. the difference of the constant coordinates of the semi-infinite edges of that

wedge.
(By 120◦-rotational symmetry the same is true for sums in other directions.)

Figure 26. Formula for the length of an edge. The edges in the
honeycomb are labeled with their constant coordinates.
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In particular, if the constant coordinates of the semi-infinite edges are interpreted
as the coefficients λi, µi, νi of three dominant weights (in nonincreasing order) as in
the rest of the paper, the labeling of the regions exactly matches the definition of
Berenstein-Zelevinsky pattern as given in [Ze] (only one of many realizations,
others to be found in the original [BZ]).

The central theorem in [BZ] gives a formula for Littlewood-Richardson coeffi-
cients as the number of BZ patterns with given boundary values. Their formulation
is more suited to SLn than GLn calculations, and as such, they need to include
a caveat that BZ patterns count the LR coefficient only if the sum of the three
weights is in the root lattice of SLn. (If the sum is not in the root lattice, the
LR coefficient is obviously zero, but there are still likely to be many BZ patterns
which now have no known representation-theoretic meaning.) In the GLn-adapted
formulation of this paper this caveat does not appear.

For us, the BZ theorem reads as follows:

Theorem 4. Let λ, µ, ν be a triple of dominant weights of GLn(C). Then the num-
ber of lattice GLn-honeycombs whose semi-infinite edges, indexed clockwise from the
southwest, have constant coordinates λ1, . . . , λn, µ1, . . . , µn, ν1, . . . , νn is the cor-
responding Littlewood-Richardson coefficient dim(Vλ⊗Vµ⊗Vν)GLn(C).

2. Appendix: The hive model

In this section we introduce another model of the points in the Berenstein-
Zelevinsky cone, much closer to the BZ models in feel, that has the honeycomb-like
property of having only “local” inequalities. It is not strictly necessary for the
logic of the paper, but is very useful as an alternate model; this is particularly true
if one wants to actually count tensor product multiplicities, rather than merely
prove them positive. The paper [Bu] exposing our work takes this model as the
fundamental one.

As was mentioned elsewhere, the primary advantage of the honeycomb model
over the original BZ models is the naturality of the “overlay” operation; in this
paper this is only used in a sort of local way, when we elide simple degeneracies.
But this comes with a cost – the linear structure on the space of honeycombs
is a bit difficult to see geometrically. In addition, the degrees of freedom of the
honeycomb are distinctly more obscure than in the BZ models.18 (And then there
is the typesetting problem.)

Given τ a honeycomb tinkertoy, recall the dual graph D(τ) defined in section
3. Define the vector space hive(τ) to be labelings of the vertices of D(τ) by real
numbers. This vector space naturally contains the lattice of integer labelings.

Recall that the embedded graph D(τ) is a collection of triangles, which we refer
to as the hive triangles. Of most interest to us are the rhombi formed by pairs
of adjacent hive triangles. Each such rhombus has two acute vertices and two
obtuse vertices. There are three possible directions a rhombus may face (see
Figure 27).

Each rhombus ρ ⊆ H gives a functional on hive(τ), defined as the sum at the
obtuse vertices minus the sum at the acute vertices (as seen in Figure 28). This
gives a rhombus inequality, asking that the rhombus functional be nonnegative.

18In some sense, though, the strength of the honeycomb model as used in this paper is that
one can study the degrees of freedom left while keeping some of the inequalities pressed, which is
not so easy to do in the BZ models.
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Figure 27. The dual graph D(τ) corresponding to the GL6 hon-
eycomb tinkertoy, a little hive triangle, and a rhombus in each
orientation.

+

+-

-

Figure 28. The dot-product picture of a rhombus inequality.

The cone in hive(τ) satisfying all these inequalities we denote HIVE(τ), and we will
call its elements τ -hives.

Proposition 4. Let τ be a honeycomb tinkertoy. Then there is a Z-linear corre-
spondence between configurations of τ , and τ-hives whose leftmost top entry is zero,
in such a way that the constant coordinates of the boundary edges of the honeycomb
are differences of boundary entries on the corresponding τ-hive.

Proof. Start with a configuration h of τ . We label the vertices in D(τ) inductively,
starting with a zero in the leftmost top entry, and filling in as follows: whenever
we move southwest or east, we increase the value by the constant coordinate of the
edge crossed; southeast, we decrease by that constant coordinate.

Our first worry is that different paths will cause us to try to fill different numbers
in the same hexagon. That this doesn’t happen is a simple consequence of the sum-
equals-zero property at a vertex of the honeycomb.

Second, we need to know that the result is a hive. Not surprisingly, the rhombus
inequalities are equivalent to the edge lengths being nonnegative.

Lastly, since we define the hive entries by inductively adding up constant coor-
dinates of edges, the boundary of the hive naturally ends up being the partial sums
of those constant coordinates. (The sum-equals-zero property is involved in seeing
this for some of the boundary edges.)

Combining this with the theorem in the appendix relating GLn-honeycombs to
Littlewood-Richardson coefficients, we find that if λ, µ, ν are integral, the number of
hives with boundary formed from partial sums of λ, µ, ν is a Littlewood-Richardson
coefficient. (In [Bu], there is given a simple bijection between hives and a standard
formulation of the Littlewood-Richardson rule.)
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There is a pleasant geometric way to interpret the rhombus inequalities. Extend
the hive to a piecewise linear function, affine-linear on each little hive triangle. Then
the rhombus inequalities state that this function is convex. Each rhombus equality
says that the function is actually linear across the boundary down the middle of
the rhombus, i.e. that the regions on which the function is affine-linear are larger
than just the little hive triangles.

In this way, the set of tight rhombus inequalities determines a certain decom-
position of the convex region in R3∑

=0 bearing D(τ) into regions (which we dub
“flatspaces” due to the geometric interpretation above). This is exactly the decom-
position into the regions of the degeneracy graph from section 3. We mentioned
there that the degeneracy graph remembers only the “combinatorial information”
about a honeycomb; we see now that it is the hive that finishes the job.

Again, we refer readers to the honeycomb/hive applet to see these hives and
convex graphs in action, at

http://www.alumni.caltech.edu/~allenk/java/honeycombs.html.
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