Fractional isoperimetric inequalities and subgroup distortion
HTML articles powered by AMS MathViewer
- by Martin R. Bridson PDF
- J. Amer. Math. Soc. 12 (1999), 1103-1118 Request permission
Abstract:
It is shown that there exist infinitely many non-integers $r>2$ such that the Dehn function of some finitely presented group is $\simeq n^r$. Explicit examples of such groups are constructed. For each rational number $s\ge 1$ pairs of finitely presented groups $H\subset G$ are constructed so that the distortion of $H$ in $G$ is $\simeq n^s$.References
- Juan M. Alonso, Inégalités isopérimétriques et quasi-isométries, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 12, 761–764 (French, with English summary). MR 1082628
- Martin R. Bridson, On the geometry of normal forms in discrete groups, Proc. London Math. Soc. (3) 67 (1993), no. 3, 596–616. MR 1238046, DOI 10.1112/plms/s3-67.3.596
- M. R. Bridson, Combings of semidirect products and $3$-manifold groups, Geom. Funct. Anal. 3 (1993), no. 3, 263–278. MR 1215781, DOI 10.1007/BF01895689
- Martin R. Bridson, Optimal isoperimetric inequalities for abelian-by-free groups, Topology 34 (1995), no. 3, 547–564. MR 1341808, DOI 10.1016/0040-9383(94)00044-L
- M. R. Bridson, Asymptotic cones and polynomial isoperimetric inequalities, Topology 38 (1999), 543–554.
- M. R. Bridson, Area versus diameter in van Kampen diagrams, in preparation.
- N. Brady and M. R. Bridson, There is only one gap in the isoperimetric spectrum, preprint, University of Oxford, 1998.
- M. R. Bridson and S. M. Gersten, The optimal isoperimetric inequality for torus bundles over the circle, Quart. J. Math. Oxford Ser. (2) 47 (1996), no. 185, 1–23. MR 1380947, DOI 10.1093/qmath/47.1.1
- G. Baumslag, C. F. Miller III, and H. Short, Isoperimetric inequalities and the homology of groups, Invent. Math. 113 (1993), no. 3, 531–560. MR 1231836, DOI 10.1007/BF01244317
- B. H. Bowditch, A short proof that a subquadratic isoperimetric inequality implies a linear one, Michigan Math. J. 42 (1995), no. 1, 103–107. MR 1322192, DOI 10.1307/mmj/1029005156
- M. R. Bridson and Ch. Pittet, Isoperimetric inequalities for the fundamental groups of torus bundles over the circle, Geom. Dedicata 49 (1994), no. 2, 203–219. MR 1266274, DOI 10.1007/BF01610621
- Steve M. Gersten, Isoperimetric and isodiametric functions of finite presentations, Geometric group theory, Vol. 1 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 181, Cambridge Univ. Press, Cambridge, 1993, pp. 79–96. MR 1238517, DOI 10.1017/CBO9780511661860.008
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
- John R. Stallings and S. M. Gersten, Casson’s idea about $3$-manifolds whose universal cover is $\textbf {R}^3$, Internat. J. Algebra Comput. 1 (1991), no. 4, 395–406. MR 1154440, DOI 10.1142/S0218196791000274
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- John Mitchell, On Carnot-Carathéodory metrics, J. Differential Geom. 21 (1985), no. 1, 35–45. MR 806700
- Graham A. Niblo and Martin A. Roller (eds.), Geometric group theory. Vol. 1, London Mathematical Society Lecture Note Series, vol. 181, Cambridge University Press, Cambridge, 1993. MR 1238510
- A. Yu. Ol′shanskiĭ, Hyperbolicity of groups with subquadratic isoperimetric inequality, Internat. J. Algebra Comput. 1 (1991), no. 3, 281–289. MR 1148230, DOI 10.1142/S0218196791000183
- A. Yu. Ol′shanskiĭ, On the distortion of subgroups of finitely presented groups, Mat. Sb. 188 (1997), no. 11, 51–98 (Russian, with Russian summary); English transl., Sb. Math. 188 (1997), no. 11, 1617–1664. MR 1601512, DOI 10.1070/SM1997v188n11ABEH000276
- A. Yu. Ol’shanskii and M. V. Sapir, Length and area functions on groups and quasi-isometric Higman embeddings, Internat. J. Algebra Comput., to appear.
- Panagiotis Papasoglu, On the sub-quadratic isoperimetric inequality, Geometric group theory (Columbus, OH, 1992) Ohio State Univ. Math. Res. Inst. Publ., vol. 3, de Gruyter, Berlin, 1995, pp. 149–157. MR 1355109
- Ch. Pittet, Isoperimetric inequalities for homogeneous nilpotent groups, Geometric group theory (Columbus, OH, 1992) Ohio State Univ. Math. Res. Inst. Publ., vol. 3, de Gruyter, Berlin, 1995, pp. 159–164. MR 1355110
- M. Sapir, J-C. Birget and E. Rips, Isoperimetric and isodiametric functions of groups, preprint, Vanderbilt University, 1997.
- Ruth Charney, Michael Davis, and Michael Shapiro (eds.), Geometric group theory, Ohio State University Mathematical Research Institute Publications, vol. 3, Walter de Gruyter & Co., Berlin, 1995. MR 1355100, DOI 10.1515/9783110810820
Additional Information
- Martin R. Bridson
- Affiliation: Mathematical Institute, 24–29 St. Giles’, Oxford OX1 3LB, Great Britain
- MR Author ID: 324657
- Email: bridson@maths.ox.ac.uk
- Received by editor(s): December 23, 1996
- Received by editor(s) in revised form: March 29, 1999
- Published electronically: June 9, 1999
- Additional Notes: This work was supported in part by NSF grant DMS-9401362 and an EPSRC Advanced Fellowship.
- © Copyright 1999 American Mathematical Society
- Journal: J. Amer. Math. Soc. 12 (1999), 1103-1118
- MSC (1991): Primary 20F32, 20F10, 20F05
- DOI: https://doi.org/10.1090/S0894-0347-99-00308-2
- MathSciNet review: 1678924
Dedicated: For John Stallings on his 60th birthday