Multidimensional van der Corput and sublevel set estimates
HTML articles powered by AMS MathViewer
- by Anthony Carbery, Michael Christ and James Wright
- J. Amer. Math. Soc. 12 (1999), 981-1015
- DOI: https://doi.org/10.1090/S0894-0347-99-00309-4
- Published electronically: June 7, 1999
- PDF | Request permission
Abstract:
Van der Corput’s lemma gives an upper bound for one-dimensional oscillatory integrals that depends only on a lower bound for some derivative of the phase, not on any upper bound of any sort. We establish generalizations to higher dimensions, in which the only hypothesis is that a partial derivative of the phase is assumed bounded below by a positive constant. Analogous upper bounds for measures of sublevel sets are also obtained. The analysis, particularly for the sublevel set estimates, has a more combinatorial flavour than in the one-dimensional case.References
- G. I. Arhipov, A. A. Karacuba, and V. N. Čubarikov, Trigonometric integrals, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 5, 971–1003, 1197 (Russian). MR 552548
- A. Carbery and S. Pérez Gómez, in preparation.
- A. Carbery, F. Ricci and J. Wright, Maximal functions and Hilbert transforms associated to polynomials, Rev. Mat. Iberoamericana 14 (1998), 117-144.
- A. Carbery, A. Seeger, S. Wainger and J. Wright, Classes of singular integral operators along variable lines, to appear, J. Geom. Anal.
- Anthony Carbery, Stephen Wainger, and James Wright, Hilbert transforms and maximal functions associated to flat curves on the Heisenberg group, J. Amer. Math. Soc. 8 (1995), no. 1, 141–179. MR 1273412, DOI 10.1090/S0894-0347-1995-1273412-0
- Michael Christ, Failure of an endpoint estimate for integrals along curves, Fourier analysis and partial differential equations (Miraflores de la Sierra, 1992) Stud. Adv. Math., CRC, Boca Raton, FL, 1995, pp. 163–168. MR 1330238
- Michael Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. (2) 122 (1985), no. 3, 575–596. MR 819558, DOI 10.2307/1971330
- P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183–190. MR 183654, DOI 10.1007/BF02759942
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- Lars Hörmander, Oscillatory integrals and multipliers on $FL^{p}$, Ark. Mat. 11 (1973), 1–11. MR 340924, DOI 10.1007/BF02388505
- Eugene Isaacson and Herbert Bishop Keller, Analysis of numerical methods, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0201039
- W. B. Jurkat and G. Sampson, The complete solution to the $(L^{p},\,L^{q})$ mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), no. 3, 403–413. MR 611228, DOI 10.1512/iumj.1981.30.30031
- N. Katz, Self crossing six sided figure problem, preprint.
- U. Keich, On $L^p$ bounds for Kakeya maximal functions and the Minkowski dimension in $\mathbf R^2$, Bull. London Math. Soc. 31 (1999), no. 2, 213-221.
- T. Keleti, Density and covering properties of intervals of $\mathbb {R}^{n}$, preprint.
- Yibiao Pan, Uniform estimates for oscillatory integral operators, J. Funct. Anal. 100 (1991), no. 1, 207–220. MR 1124299, DOI 10.1016/0022-1236(91)90108-H
- D. H. Phong and E. M. Stein, On a stopping process for oscillatory integrals, J. Geom. Anal. 4 (1994), no. 1, 105–120. MR 1274140, DOI 10.1007/BF02921595
- D. H. Phong and E. M. Stein, The Newton polyhedron and oscillatory integral operators, Acta Math. 179 (1997), no. 1, 105–152. MR 1484770, DOI 10.1007/BF02392721
- Fulvio Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), no. 1, 179–194. MR 890662, DOI 10.1016/0022-1236(87)90064-4
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- Andreas Seeger, $L^2$-estimates for a class of singular oscillatory integrals, Math. Res. Lett. 1 (1994), no. 1, 65–73. MR 1258491, DOI 10.4310/MRL.1994.v1.n1.a8
- Andreas Seeger, Radon transforms and finite type conditions, J. Amer. Math. Soc. 11 (1998), no. 4, 869–897. MR 1623430, DOI 10.1090/S0894-0347-98-00280-X
- Per Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981), no. 1, 47–55. MR 600031, DOI 10.1512/iumj.1981.30.30004
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
Bibliographic Information
- Anthony Carbery
- Affiliation: Department of Mathematics & Statistics, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JZ, Scotland, United Kingdom
- Email: carbery@maths.ed.ac.uk
- Michael Christ
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720-3840
- MR Author ID: 48950
- Email: mchrist@math.berkeley.edu
- James Wright
- Affiliation: Department of Mathematics, University of New South Wales, 2052 Sydney, New South Wales, Australia
- Email: jimw@maths.unsw.edu.au
- Received by editor(s): June 24, 1998
- Published electronically: June 7, 1999
- Additional Notes: This work was partially supported by EPSRC grants GR/L10024 and GR/L78574 (Carbery), NSF grant DMS 9623007 (Christ), ARC grants (Wright), and MSRI
- © Copyright 1999 American Mathematical Society
- Journal: J. Amer. Math. Soc. 12 (1999), 981-1015
- MSC (1991): Primary 42B10; Secondary 26D10, 05D99
- DOI: https://doi.org/10.1090/S0894-0347-99-00309-4
- MathSciNet review: 1683156