Compact subsets of the first Baire class
HTML articles powered by AMS MathViewer
- by Stevo Todorčević
- J. Amer. Math. Soc. 12 (1999), 1179-1212
- DOI: https://doi.org/10.1090/S0894-0347-99-00312-4
- Published electronically: July 6, 1999
- PDF | Request permission
Abstract:
In this paper we present results about the structure of compact subsets of the first Baire class. For example, we give a complete description of characters of points in such compacta as well as a complete list of ‘critical’ members of this class of compacta. Moreover, we describe the close relationship between this class of compacta and the class of compact metric spaces.References
- P. Alexandroff, P. Urysohn, Mèmoire sur les espaces topologiques compacts, Verh. Akad. Wetensch. Amsterdam 14 (1929).
- S. Argyros and S. Mercourakis, On weakly Lindelöf Banach spaces, Rocky Mountain J. Math. 23 (1993), no. 2, 395–446. MR 1226181, DOI 10.1216/rmjm/1181072569
- R. Baire, Sur les fonctions des variables rèelles, Ann. Mat. Pura Appl. 3 (1899), 16-30.
- Andreas Blass, A partition theorem for perfect sets, Proc. Amer. Math. Soc. 82 (1981), no. 2, 271–277. MR 609665, DOI 10.1090/S0002-9939-1981-0609665-0
- J. Bourgain, Some remarks on compact sets of first Baire class, Bull. Soc. Math. Belg. 30 (1978), no. 1, 3–10. MR 549647
- J. Bourgain, D. H. Fremlin, and M. Talagrand, Pointwise compact sets of Baire-measurable functions, Amer. J. Math. 100 (1978), no. 4, 845–886. MR 509077, DOI 10.2307/2373913
- E. Čech, B. Pospišil, Sur les espaces compacts, Publ. Fac. Sci. Univ. Masaryk Brno 258 (1938), 3-7.
- Gabriel Debs, Effective properties in compact sets of Borel functions, Mathematika 34 (1987), no. 1, 64–68. MR 908840, DOI 10.1112/S0025579300013280
- D. H. Fremlin, Consequences of Martin’s axiom, Cambridge Tracts in Mathematics, vol. 84, Cambridge University Press, Cambridge, 1984. MR 780933, DOI 10.1017/CBO9780511896972
- D. H. Fremlin, On compact spaces carrying Radon measures of uncountable Maharam type, Fund. Math. 154 (1997), no. 3, 295–304. MR 1475869, DOI 10.4064/fm-154-3-295-304
- Gilles Godefroy, Compacts de Rosenthal, Pacific J. Math. 91 (1980), no. 2, 293–306 (French, with English summary). MR 615679
- Gilles Godefroy and Alain Louveau, Axioms of determinacy and biorthogonal systems, Israel J. Math. 67 (1989), no. 1, 109–116. MR 1021365, DOI 10.1007/BF02764903
- Gilles Godefroy and Michel Talagrand, Espaces de Banach représentables, Israel J. Math. 41 (1982), no. 4, 321–330 (French, with English summary). MR 657864, DOI 10.1007/BF02760538
- Jan van Mill and George M. Reed (eds.), Open problems in topology, North-Holland Publishing Co., Amsterdam, 1990. MR 1078636
- F. Hausdorff, Die Graduierung nach dem Endrerlauf, Abl. Königl. Sächs Gesell. Wiss Math.–Phys. Kl. 31 (1909), 296–334.
- Robert C. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738–743. MR 417763, DOI 10.1090/S0002-9904-1974-13580-9
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Adam Krawczyk, On the Rosenthal compacta and analytic sets, Proc. Amer. Math. Soc. 115 (1992), no. 4, 1095–1100. MR 1086583, DOI 10.1090/S0002-9939-1992-1086583-5
- J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain $\ell _{1}$ and whose duals are non-separable, Studia Math. 54 (1975), no. 1, 81–105. MR 390720, DOI 10.4064/sm-54-1-81-105
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- A. Louveau, S. Shelah, and B. Veličković, Borel partitions of infinite subtrees of a perfect tree, Ann. Pure Appl. Logic 63 (1993), no. 3, 271–281. MR 1237234, DOI 10.1016/0168-0072(93)90151-3
- Stanisław Łojasiewicz, An introduction to the theory of real functions, 3rd ed., A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1988. With contributions by M. Kosiek, W. Mlak and Z. Opial; Translated from the Polish by G. H. Lawden; Translation edited by A. V. Ferreira. MR 952856
- Witold Marciszewski, On a classification of pointwise compact sets of the first Baire class functions, Fund. Math. 133 (1989), no. 3, 195–209. MR 1065902, DOI 10.4064/fm-133-3-195-209
- Witold Marciszewski, On properties of Rosenthal compacta, Proc. Amer. Math. Soc. 115 (1992), no. 3, 797–805. MR 1096213, DOI 10.1090/S0002-9939-1992-1096213-4
- Miroslav Hušek and Jan van Mill (eds.), Recent progress in general topology, North-Holland Publishing Co., Amsterdam, 1992. Papers from the Symposium on Topology (Toposym) held in Prague, August 19–23, 1991. MR 1229121
- Arnold W. Miller, Infinite combinatorics and definability, Ann. Pure Appl. Logic 41 (1989), no. 2, 179–203. MR 983001, DOI 10.1016/0168-0072(89)90013-4
- I.P. Nathanson, Theory of functions of real variable, Moscow, 1950.
- I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515–531. MR 370466
- E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing $l^{1}$, Israel J. Math. 20 (1975), no. 3-4, 375–384. MR 377482, DOI 10.1007/BF02760341
- Janusz Pawlikowski, Parametrized Ellentuck theorem, Topology Appl. 37 (1990), no. 1, 65–73. MR 1075374, DOI 10.1016/0166-8641(90)90015-T
- Roman Pol, Note on the spaces $P(S)$ of regular probability measures whose topology is determined by countable subsets, Pacific J. Math. 100 (1982), no. 1, 185–201. MR 661448
- R. Pol, On pointwise and weak topology in function spaces, Warszaw University, 1984.
- Roman Pol, Note on pointwise convergence of sequences of analytic sets, Mathematika 36 (1989), no. 2, 290–300 (1990). MR 1045789, DOI 10.1112/S0025579300013140
- Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, DOI 10.1073/pnas.71.6.2411
- Haskell P. Rosenthal, Point-wise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), no. 2, 362–378. MR 438113, DOI 10.2307/2373824
- Haskell P. Rosenthal, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), no. 5, 803–831. MR 499730, DOI 10.1090/S0002-9904-1978-14521-2
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- Dana Scott, A proof of the independence of the continuum hypothesis, Math. Systems Theory 1 (1967), 89–111. MR 218233, DOI 10.1007/BF01705520
- Charles Stegall, The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206 (1975), 213–223. MR 374381, DOI 10.1090/S0002-9947-1975-0374381-1
- Jacques Stern, A Ramsey theorem for trees, with an application to Banach spaces, Israel J. Math. 29 (1978), no. 2-3, 179–188. MR 476554, DOI 10.1007/BF02762007
- W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53–61. MR 227743, DOI 10.4064/sm-30-1-53-61
- Michel Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224. MR 756174, DOI 10.1090/memo/0307
- Stevo Todorčević, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR 980949, DOI 10.1090/conm/084
- Stevo Todorčević, Free sequences, Topology Appl. 35 (1990), no. 2-3, 235–238. MR 1058803, DOI 10.1016/0166-8641(90)90108-E
- Stevo Todorčević, Analytic gaps, Fund. Math. 150 (1996), no. 1, 55–66. MR 1387957, DOI 10.4064/fm-150-1-55-66
- H. E. White Jr., Variants of Blumberg’s theorem, Illinois J. Math. 26 (1982), no. 3, 359–373. MR 658447
Bibliographic Information
- Stevo Todorčević
- Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
- MR Author ID: 172980
- Email: stevo@math.toronto.edu
- Received by editor(s): January 20, 1997
- Received by editor(s) in revised form: April 20, 1999
- Published electronically: July 6, 1999
- © Copyright 1999 American Mathematical Society
- Journal: J. Amer. Math. Soc. 12 (1999), 1179-1212
- MSC (1991): Primary 26A21, 28A05, 28A20, 05D10, 03E05, 03E15, 54H05, 46B25, 46B45
- DOI: https://doi.org/10.1090/S0894-0347-99-00312-4
- MathSciNet review: 1685782