Algebraic families of nonzero elements of Shafarevich-Tate groups
HTML articles powered by AMS MathViewer
- by Jean-Louis Colliot-Thélène and Bjorn Poonen
- J. Amer. Math. Soc. 13 (2000), 83-99
- DOI: https://doi.org/10.1090/S0894-0347-99-00315-X
- Published electronically: August 20, 1999
- PDF | Request permission
Abstract:
Principal homogeneous spaces under an abelian variety defined over a number field $k$ may have rational points in all completions of the number field without having rational points over $k$. Such principal homogeneous spaces represent the nonzero elements of the Shafarevich-Tate group of the abelian variety. We produce nontrivial, one-parameter families of such principal homogeneous spaces. The total space of these families are counterexamples to the Hasse principle. We show these may be accounted for by the Brauer-Manin obstruction.References
- M. Amer, Quadratische Formen über Funktionenkörpern, Dissertation, Mainz, 1976.
- Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR 0354654
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- Armand Brumer, Remarques sur les couples de formes quadratiques, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 16, A679–A681 (French, with English summary). MR 498374
- J. W. S. Cassels and M. J. T. Guy, On the Hasse principle for cubic surfaces, Mathematika 13 (1966), 111–120. MR 211966, DOI 10.1112/S0025579300003879
- J.-L. Colliot-Thélène, The Hasse principle in a pencil of algebraic varieties, Number theory (Tiruchirapalli, 1996) Contemp. Math., vol. 210, Amer. Math. Soc., Providence, RI, 1998, pp. 19–39. MR 1478483, DOI 10.1090/conm/210/02782
- J.-L. Colliot-Thélène and J.-J. Sansuc, La descente sur les variétés rationnelles, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 223–237 (French). MR 605344
- Jean-Louis Colliot-Thélène, Dimitri Kanevsky, and Jean-Jacques Sansuc, Arithmétique des surfaces cubiques diagonales, Diophantine approximation and transcendence theory (Bonn, 1985) Lecture Notes in Math., vol. 1290, Springer, Berlin, 1987, pp. 1–108 (French). MR 927558, DOI 10.1007/BFb0078705
- Jean-Louis Colliot-Thélène, Jean-Jacques Sansuc, and Peter Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. I, J. Reine Angew. Math. 373 (1987), 37–107. MR 870307
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240, DOI 10.1007/BF02684599
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- A. Grothendieck, Technique de descente et théorèmes d’existence en géométrie algébrique. V. Les schémas de Picard: théorèmes d’existence, in Séminaire Bourbaki, Vol. 7, Exp. 232, 143–161, Soc. Math. France, Paris, 1995.
- Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 46–66 (French). MR 244269
- David Harari, Méthode des fibrations et obstruction de Manin, Duke Math. J. 75 (1994), no. 1, 221–260 (French). MR 1284820, DOI 10.1215/S0012-7094-94-07507-8
- D. Harari, Weak approximation and non-abelian fundamental groups, preprint, October 1998.
- D. Harari and A. N. Skorobogatov, Non-abelian cohomology and rational points, preprint, May 1999.
- Uwe Jannsen, Principe de Hasse cohomologique, Séminaire de Théorie des Nombres, Paris, 1989–90, Progr. Math., vol. 102, Birkhäuser Boston, Boston, MA, 1992, pp. 121–140 (French). MR 1476733, DOI 10.1007/978-1-4757-4269-5_{1}0
- Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, Vol. 340, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II); Dirigé par P. Deligne et N. Katz. MR 0354657
- Stephen Lichtenbaum, Duality theorems for curves over $p$-adic fields, Invent. Math. 7 (1969), 120–136. MR 242831, DOI 10.1007/BF01389795
- C.-E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, Thesis, University of Uppsala, 1940.
- Qing Liu, Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète, Trans. Amer. Math. Soc. 348 (1996), no. 11, 4577–4610 (French, with English summary). MR 1363944, DOI 10.1090/S0002-9947-96-01684-4
- Y. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 401–411. MR 0427322
- Yu. I. Manin, Cubic forms, 2nd ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986. Algebra, geometry, arithmetic; Translated from the Russian by M. Hazewinkel. MR 833513
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- B. Poonen and M. Stoll, The Cassels-Tate pairing on polarized abelian varieties, to appear in Ann. of Math.
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
- Claus Scheiderer, Real and étale cohomology, Lecture Notes in Mathematics, vol. 1588, Springer-Verlag, Berlin, 1994. MR 1321819, DOI 10.1007/BFb0074269
- Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 236190, DOI 10.2307/1970722
- SGA 4, Théorie des topos et cohomologie étale des schémas, Tome 1. Théorie des topos. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964. Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics, Vol. 269, Springer-Verlag, Berlin-New York, 1972.
- A. N. Skorobogatov, Beyond the Manin obstruction, Invent. Math. 135 (1999), no. 2, 399–424.
- H. P. F. Swinnerton-Dyer, Two special cubic surfaces, Mathematika 9 (1962), 54–56. MR 139989, DOI 10.1112/S0025579300003090
- Peter Swinnerton-Dyer, The Brauer group of cubic surfaces, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 3, 449–460. MR 1207510, DOI 10.1017/S0305004100076106
- J. Van Geel and V. I. Yanchevskii, Indices of hyperelliptic curves over $p$-adic fields, Manuscripta Math. 96 (1998), no. 3, 317–333. MR 1638165, DOI 10.1007/s002290050070
Bibliographic Information
- Jean-Louis Colliot-Thélène
- Affiliation: C.N.R.S., Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay, France
- MR Author ID: 50705
- Email: colliot@math.u-psud.fr
- Bjorn Poonen
- Affiliation: C.N.R.S., Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay, France
- MR Author ID: 250625
- ORCID: 0000-0002-8593-2792
- Email: poonen@math.berkeley.edu
- Received by editor(s): January 8, 1999
- Received by editor(s) in revised form: June 9, 1999
- Published electronically: August 20, 1999
- Additional Notes: Most of the research for this paper was done while the authors were both enjoying the hospitality of the Isaac Newton Institute, Cambridge, England. The first author is a researcher at C.N.R.S. The second author is partially supported by NSF grant DMS-9801104, a Sloan Fellowship, and a Packard Fellowship.
- © Copyright 1999 American Mathematical Society
- Journal: J. Amer. Math. Soc. 13 (2000), 83-99
- MSC (1991): Primary 11G10; Secondary 11G30, 11G35, 14H40, 14J27
- DOI: https://doi.org/10.1090/S0894-0347-99-00315-X
- MathSciNet review: 1697093