Principe local-global pour les zéro-cycles sur les surfaces réglées
HTML articles powered by AMS MathViewer
- by Jean-Louis Colliot-Thélène PDF
- J. Amer. Math. Soc. 13 (2000), 101-124 Request permission
Abstract:
Let $k$ be a number field, $C/k$ a smooth projective curve, and $X$ a smooth projective surface which is a conic bundle over $C$. Let $CH_0(X/C)$ be the relative Chow group, which is the kernel of the projection map $CH_0(X) \rightarrow CH_0(C)$ on Chow groups of zero-cycles. For each place $v$ of $k$, one may consider the relative Chow group $CH_0(X_v/C_v)=CH_0(X\times _kk_v/C\times _kk_v)$. Under minor assumptions, we identify the diagonal image of $CH_0(X/C)$ in the product of all $CH_0(X_v/C_v)$ as the kernel of the natural pairing with the Brauer group of $X$. When $C$ is an elliptic curve with finite Tate-Shafarevich group, under minor assumptions, we show that the Brauer-Manin obstruction to the existence of a zero-cycle of degree one on $X$ is the only obstruction.References
- Jón Kr. Arason, Cohomologische invarianten quadratischer Formen, J. Algebra 36 (1975), no. 3, 448–491 (French). MR 389761, DOI 10.1016/0021-8693(75)90145-3
- J. W. S. Cassels, Arithmetic on curves of genus $1$. VII. The dual exact sequence, J. Reine Angew. Math. 216 (1964), 150–158. MR 169849, DOI 10.1515/crll.1964.216.150
- Jean-Louis Colliot-Thélène, L’arithmétique du groupe de Chow des zéro-cycles, J. Théor. Nombres Bordeaux 7 (1995), no. 1, 51–73 (French). Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993). MR 1413566, DOI 10.5802/jtnb.130
- J.-L. Colliot-Thélène, Conjectures de type local-global sur l’image de l’application cycle en cohomologie étale, to appear in Proceedings of the 1997 Seattle conference on Algebraic K-Theory, W. Raskind and C. Weibel, eds., Symposia in Pure Mathematics 67, Amer. Math. Soc., Providence, 1999.
- Jean-Louis Colliot-Thélène and Uwe Jannsen, Sommes de carrés dans les corps de fonctions, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 11, 759–762 (French, with English summary). MR 1108485
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La $R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229 (French). MR 450280, DOI 10.24033/asens.1325
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch, Duke Math. J. 48 (1981), no. 2, 421–447. MR 620258
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375–492 (French). MR 899402, DOI 10.1215/S0012-7094-87-05420-2
- Jean-Louis Colliot-Thélène and Alexei N. Skorobogatov, Groupe de Chow des zéro-cycles sur les fibrés en quadriques, $K$-Theory 7 (1993), no. 5, 477–500 (French, with English summary). MR 1255062, DOI 10.1007/BF00961538
- J.-L. Colliot-Thélène, A. N. Skorobogatov, and Peter Swinnerton-Dyer, Rational points and zero-cycles on fibred varieties: Schinzel’s hypothesis and Salberger’s device, J. Reine Angew. Math. 495 (1998), 1–28. MR 1603908, DOI 10.1515/crll.1998.019
- Jean-Louis Colliot-Thélène and Peter Swinnerton-Dyer, Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. Reine Angew. Math. 453 (1994), 49–112. MR 1285781, DOI 10.1515/crll.1994.453.49
- D. F. Coray, Two remarks on the Bertini theorem, tapuscrit 1980.
- Emmanuelle Frossard, Groupe de Chow de dimension zéro des fibrations en variétés de Severi-Brauer, Compositio Math. 110 (1998), no. 2, 187–213 (French, with English summary). MR 1602076, DOI 10.1023/A:1000283524585
- E. Frossard et V. Suresh, Un lemme de déplacement pour les zéro-cycles sur les fibrations en coniques, appendice au présent article, J. Amer. Math. Soc., ce volume.
- Michel Gros, $0$-cycles de degré $0$ sur les surfaces fibrées en coniques, J. Reine Angew. Math. 373 (1987), 166–184 (French). MR 870310, DOI 10.1515/crll.1987.373.166
- Kazuya Kato, A Hasse principle for two-dimensional global fields, J. Reine Angew. Math. 366 (1986), 142–183. With an appendix by Jean-Louis Colliot-Thélène. MR 833016, DOI 10.1515/crll.1986.366.142
- Steven L. Kleiman and Allen B. Altman, Bertini theorems for hypersurface sections containing a subscheme, Comm. Algebra 7 (1979), no. 8, 775–790. MR 529493, DOI 10.1080/00927877908822375
- Y. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 401–411. MR 0427322
- A. S. Merkur′ev and A. A. Suslin, $K$-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011–1046, 1135–1136 (Russian). MR 675529
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
- R. Parimala and V. Suresh, Erratum: “Zero-cycles on quadric fibrations: finiteness theorems and the cycle map” [Invent. Math. 122 (1995), no. 1, 83–117; MR1354955 (96i:14005)], Invent. Math. 123 (1996), no. 3, 611. MR 1383963, DOI 10.1007/s002220050042
- S. Saito, Some observations on motivic cohomology of arithmetic schemes, Invent. Math. 98 (1989), no. 2, 371–404. MR 1016270, DOI 10.1007/BF01388859
- P. Salberger, $K$-theory of orders and their Brauer-Severi schemes, Thèse, Université de Göteborg, 1985.
- P. Salberger, Zero-cycles on rational surfaces over number fields, Invent. Math. 91 (1988), no. 3, 505–524. MR 928495, DOI 10.1007/BF01388784
- Jean-Jacques Sansuc, Descente et principe de Hasse pour certaines variétés rationnelles, Seminar on Number Theory, Paris 1980-81 (Paris, 1980/1981) Progr. Math., vol. 22, Birkhäuser, Boston, Mass., 1982, pp. 253–271 (French). MR 693323
- Jean-Pierre Serre, Lie algebras and Lie groups, 2nd ed., Lecture Notes in Mathematics, vol. 1500, Springer-Verlag, Berlin, 1992. 1964 lectures given at Harvard University. MR 1176100, DOI 10.1007/978-3-540-70634-2
- E. Witt, Zerlegung reeller algebraischer Funktionen in Quadrate. Schiefkörper über reellem Funktionenkörper, J. für die reine und angew. Math. (Crelle) 171 (1934), 31-44.
Additional Information
- Jean-Louis Colliot-Thélène
- Affiliation: C.N.R.S., UMR 8628, Mathématiques, Bâtiment 425, Université de Paris-Sud, F–91405 Orsay, France
- MR Author ID: 50705
- Email: colliot@math.u-psud.fr
- Received by editor(s): May 29, 1998
- Received by editor(s) in revised form: June 17, 1999
- Published electronically: September 29, 1999
- Additional Notes: La première partie de l’article (groupes de Chow relatifs, Théorèmes 1.3 et 1.4) a été conçue en janvier 1996, lors d’un séjour à l’Institut Tata (TIFR, Mumbai, Inde), Institut que j’ai plaisir à remercier pour son hospitalité. Je remercie aussi le Centre Franco-Indien pour la Promotion de la Recherche Avancée (CEFIPRA/IFCPAR) pour son soutien en diverses occasions. Le Théorème 1.5 a été trouvé à l’occasion de la conférence L’arithmétique et la géométrie des cycles algébriques, qui s’est tenue à Banff (Alberta, Canada), du 7 au 19 Juin 1998. Une version préliminaire fut mise au point à l’Institut Isaac Newton (Cambridge, G.-B.).
Je remercie R. Sujatha pour de nombreuses discussions à l’origine de ce travail, et dont on trouvera une trace au §9. Je remercie aussi E. Frossard, V. Suresh et R. Parimala pour diverses remarques. - © Copyright 1999 American Mathematical Society
- Journal: J. Amer. Math. Soc. 13 (2000), 101-124
- MSC (2000): Primary 11G35, 14J26, 14C15; Secondary 14J20, 14G25
- DOI: https://doi.org/10.1090/S0894-0347-99-00318-5
- MathSciNet review: 1697092
Dedicated: Avec un appendice par E. Frossard et V. Suresh