Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Purity of the stratification by Newton polygons
HTML articles powered by AMS MathViewer

by A. J. de Jong and F. Oort;
J. Amer. Math. Soc. 13 (2000), 209-241
DOI: https://doi.org/10.1090/S0894-0347-99-00322-7
Published electronically: September 22, 1999

Abstract:

Let $S$ be a variety in characteristic $p>0$. Suppose we are given a nondegenerate $F$-crystal over $S$, for example the $i$th relative crystalline cohomology sheaf of a family of smooth projective varieties over $S$. At each point $s$ of $S$ we have the Newton polygon associated to the action of $F$ on the fibre of the crystal at $s$. According to a theorem of Grothendieck the Newton polygon jumps up under specialization. The main theorem of this paper is that the jumps occur in codimension $1$ on $S$ (the Purity Theorem). As an application we prove some results on deformations of iso-simple $p$-divisible groups.
References
  • M. Artin, Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88–135. MR 260747, DOI 10.2307/1970602
  • M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 268188, DOI 10.1007/BF02684596
  • Pierre Berthelot, Cohomologie cristalline des schémas de caractéristique $p>0$, Lecture Notes in Mathematics, Vol. 407, Springer-Verlag, Berlin-New York, 1974 (French). MR 384804
  • Pierre Berthelot and William Messing, Théorie de Dieudonné cristalline. III. Théorèmes d’équivalence et de pleine fidélité, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 173–247 (French). MR 1086886
  • B. Conrad, Irreducible components of rigid spaces, Preprint 1998. Available on http://www-math.mit.edu/~dejong
  • A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 5–96 (1996). MR 1383213, DOI 10.1007/BF02698637
  • A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020, DOI 10.1007/BF02698644
  • A.J. de Jong, Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math. 134 (1998), pp. 301–333.
  • P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240, DOI 10.1007/BF02684599
  • Daniel Ferrand and Michel Raynaud, Fibres formelles d’un anneau local noethérien, Ann. Sci. École Norm. Sup. (4) 3 (1970), 295–311 (French). MR 272779, DOI 10.24033/asens.1195
  • Benedict H. Gross, Ramification in $p$-adic Lie extensions, Journées de Géométrie Algébrique de Rennes (Rennes, 1978) Astérisque, vol. 65, Soc. Math. France, Paris, 1979, pp. 81–102. MR 563473
  • Alexandre Grothendieck, Groupes de Barsotti-Tate et cristaux de Dieudonné, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], No. 45 (Été, vol. 1970, Les Presses de l’Université de Montréal, Montreal, QC, 1974 (French). MR 417192
  • David Harbater, Fundamental groups and embedding problems in characteristic $p$, Recent developments in the inverse Galois problem (Seattle, WA, 1993) Contemp. Math., vol. 186, Amer. Math. Soc., Providence, RI, 1995, pp. 353–369. MR 1352282, DOI 10.1090/conm/186/02191
  • Lucien Szpiro (ed.), Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, Société Mathématique de France, Paris, 1985. Papers from the seminar held at the École Normale Supérieure, Paris, 1983–84; Astérisque No. 127 (1985). MR 801916
  • Nicholas M. Katz, $p$-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin-New York, 1973, pp. 69–190. MR 447119
  • Nicholas M. Katz, Slope filtration of $F$-crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978) Astérisque, vol. 63, Soc. Math. France, Paris, 1979, pp. 113–163. MR 563463
  • Ke Zheng Li, Classification of supersingular abelian varieties, Math. Ann. 283 (1989), no. 2, 333–351. MR 980602, DOI 10.1007/BF01446439
  • Ke-Zheng Li and Frans Oort, Moduli of supersingular abelian varieties, Lecture Notes in Mathematics, vol. 1680, Springer-Verlag, Berlin, 1998. MR 1611305, DOI 10.1007/BFb0095931
  • Joseph Lipman, Desingularization of two-dimensional schemes, Ann. of Math. (2) 107 (1978), no. 1, 151–207. MR 491722, DOI 10.2307/1971141
  • Yu. I. Manin, The theory of commutative formal groups over fields of finite characteristic, Russian Mathematical Surveys 18, (1963), pp. 1–80.
  • Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1980. MR 575344
  • William Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Mathematics, Vol. 264, Springer-Verlag, Berlin-New York, 1972. MR 347836, DOI 10.1007/BFb0058301
  • Hiroo Miki, On $Z_{p}$-extensions of complete $p$-adic power series fields and function fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 (1974), 377–393. MR 364206
  • Laurent Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque 129 (1985), 266 (French, with English summary). MR 797982
  • Laurent Moret-Bailly, Un problème de descente, Bull. Soc. Math. France 124 (1996), no. 4, 559–585 (French, with English and French summaries). MR 1432058, DOI 10.24033/bsmf.2293
  • David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5–22. MR 153682, DOI 10.1007/BF02698717
  • Peter Norman, An algorithm for computing local moduli of abelian varieties, Ann. of Math. (2) 101 (1975), 499–509. MR 389928, DOI 10.2307/1970937
  • Peter Norman and Frans Oort, Moduli of abelian varieties, Ann. of Math. (2) 112 (1980), no. 3, 413–439. MR 595202, DOI 10.2307/1971152
  • Frans Oort, Moduli of abelian varieties and Newton polygons, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 5, 385–389 (English, with French summary). MR 1096617, DOI 10.1007/978-3-0348-8303-0_{1}4
  • F. Oort, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Utrecht Preprint 995, January 1997. [To appear]
  • Richard S. Pierce, Associative algebras, Studies in the History of Modern Science, vol. 9, Springer-Verlag, New York-Berlin, 1982. Graduate Texts in Mathematics, 88. MR 674652, DOI 10.1007/978-1-4757-0163-0
  • Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265, Springer-Verlag, Berlin-New York, 1972 (French). MR 338002
  • Jean-Pierre Serre, Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Hermann, Paris, 1962 (French). Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1296. MR 150130
  • Jean-Pierre Serre, Groupes algébriques et corps de classes, Publications de l’Institut de Mathématique de l’Université de Nancago, No. VII, Hermann, Paris, 1975 (French). Deuxième édition; Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1264. MR 466151
  • J. T. Tate, $p$-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin-New York, 1967, pp. 158–183. MR 231827
  • T. Zink, The display of a formal $p$-divisible group, University of Bielefeld, Preprint 98–017, February 1998.
  • Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1); Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. MR 354651
  • Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux $(SGA$ $2)$, Advanced Studies in Pure Mathematics, Vol. 2, North-Holland Publishing Co., Amsterdam; Masson & Cie, Editeur, Paris, 1968 (French). Augmenté d’un exposé par Michèle Raynaud; Séminaire de Géométrie Algébrique du Bois-Marie, 1962. MR 476737
  • Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I); Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. MR 354656
  • A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228 (French). MR 217083
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14L05, 14B05
  • Retrieve articles in all journals with MSC (2000): 14L05, 14B05
Bibliographic Information
  • A. J. de Jong
  • Affiliation: Massachusetts Institute of Technology, Department of Mathematics, Building 2, Room 270, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307
  • Email: dejong@math.mit.edu
  • F. Oort
  • Affiliation: Universiteit Utrecht, Mathematisch Instituut, Budapestlaan 6, NL-3508 TA Utrecht, The Netherlands
  • Email: oort@math.uu.nl
  • Received by editor(s): October 28, 1998
  • Received by editor(s) in revised form: July 27, 1999
  • Published electronically: September 22, 1999
  • Additional Notes: The research of Dr. A.J. de Jong has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.
  • © Copyright 1999 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 13 (2000), 209-241
  • MSC (2000): Primary 14L05, 14B05
  • DOI: https://doi.org/10.1090/S0894-0347-99-00322-7
  • MathSciNet review: 1703336