Interpolating hereditarily indecomposable Banach spaces
HTML articles powered by AMS MathViewer
- by S. A. Argyros and V. Felouzis;
- J. Amer. Math. Soc. 13 (2000), 243-294
- DOI: https://doi.org/10.1090/S0894-0347-00-00325-8
- Published electronically: January 31, 2000
- PDF | Request permission
Abstract:
The following dichotomy is proved. Every Banach space either contains a subspace isomorphic to $\ell ^1$, or it has an infinite-dimensional closed subspace which is a quotient of a Hereditarily Indecomposable (H.I.) separable Banach space. In the particular case of $L^p(\lambda ),\ 1<p<\infty$, it is shown that the space itself is a quotient of a H.I. space. The factorization of certain classes of operators, acting between Banach spaces, through H.I. spaces is also investigated. Among others it is shown that the identity operator $I: L^{\infty }(\lambda )\to L^1(\lambda )$ admits a factorization through a H.I. space. The same result holds for every strictly singular operator $T: \ell ^p\to \ell ^q,\ 1<p,q<\infty$. Interpolation methods and the geometric concept of thin convex sets together with the techniques concerning the construction of Hereditarily Indecomposable spaces are used to obtain the above mentioned results.References
- Dale E. Alspach and Spiros Argyros, Complexity of weakly null sequences, Dissertationes Math. (Rozprawy Mat.) 321 (1992), 44. MR 1191024
- S. A. Argyros and I. Deliyanni. Banach spaces of the type of Tsirelson, preprint 1992.
- S. A. Argyros and I. Deliyanni, Examples of asymptotic $l_1$ Banach spaces, Trans. Amer. Math. Soc. 349 (1997), no. 3, 973–995. MR 1390965, DOI 10.1090/S0002-9947-97-01774-1
- S. A. Argyros, I. Deliyanni, D. Kutzarova and A. Manoussakis, Modified mixed Tsirelson spaces, J. of Func. Anal. 159 (1998), 43-109.
- S. A. Argyros and I. Gasparis. Unconditional structures of weakly null sequences (Preprint).
- S. A. Argyros, S. Mercourakis, and A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157–193. MR 1658551, DOI 10.1007/BF02764008
- G. Androulakis and E. Odell. Distorting mixed Tsirelson spaces (Preprint).
- Steven F. Bellenot, Tsirelson superspaces and $l_p$, J. Funct. Anal. 69 (1986), no. 2, 207–228. MR 865221, DOI 10.1016/0022-1236(86)90089-3
- J. Bourgain, On convergent sequences of continuous functions, Bull. Soc. Math. Belg. Sér. B 32 (1980), no. 2, 235–249. MR 682645
- J. Bourgain. La propriété de Radon-Nicodym, Math. Univ. Pierre et Marie Curie 36 (1979).
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- W. J. Davis, T. Figiel, W. B. Johnson, and A. Pełczyński, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311–327. MR 355536, DOI 10.1016/0022-1236(74)90044-5
- V. Ferenczi. Quotient Hereditarily Idecomposable spaces (Preprint).
- V. Ferenczi, A uniformly convex hereditarily indecomposable Banach space, Israel J. Math. 102 (1997), 199–225. MR 1489106, DOI 10.1007/BF02773800
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- W. T. Gowers, A new dichotomy for Banach spaces, Geom. Funct. Anal. 6 (1996), no. 6, 1083–1093. MR 1421876, DOI 10.1007/BF02246998
- W. T. Gowers, A Banach space not containing $c_0,\ l_1$ or a reflexive subspace, Trans. Amer. Math. Soc. 344 (1994), no. 1, 407–420. MR 1250820, DOI 10.1090/S0002-9947-1994-1250820-0
- W. Timothy Gowers, A remark about the scalar-plus-compact problem, Convex geometric analysis (Berkeley, CA, 1996) Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 111–115. MR 1665582
- W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), no. 4, 851–874. MR 1201238, DOI 10.1090/S0894-0347-1993-1201238-0
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- P. Habala. Banach spaces all of whose subspaces fail the Gordon-Lewis property, Math. Ann. 310 (1998), N$^{\text {o}}$2, 197-212.
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- K. Kuratowski and A. Mostowski, Set theory, PWN—Polish Scientific Publishers, Warsaw; North-Holland Publishing Co., Amsterdam, 1968. Translated from the Polish by M. Maczyński. MR 229526
- Nigel Kalton and Albert Wilansky, Tauberian operators on Banach spaces, Proc. Amer. Math. Soc. 57 (1976), no. 2, 251–255. MR 473896, DOI 10.1090/S0002-9939-1976-0473896-1
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 493279
- Denny H. Leung, On $c_0$-saturated Banach spaces, Illinois J. Math. 39 (1995), no. 1, 15–29. MR 1299646
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 500056
- B. Maurey and H. P. Rosenthal, Normalized weakly null sequence with no unconditional subsequence, Studia Math. 61 (1977), no. 1, 77–98. MR 438091, DOI 10.4064/sm-61-1-77-98
- Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
- R. Neidinger. Factoring Operators through hereditarily-$\ell _p$ spaces, Lecture Notes in Math. 1166 (1985).
- R. Neidinger. Properties of Tauberian Operators, Dissertation. University of Texas at Austin, 1984.
- Richard Neidinger and Haskell P. Rosenthal, Norm-attainment of linear functionals on subspaces and characterizations of Tauberian operators, Pacific J. Math. 118 (1985), no. 1, 215–228. MR 783025
- Edward Odell and Thomas Schlumprecht, The distortion problem, Acta Math. 173 (1994), no. 2, 259–281. MR 1301394, DOI 10.1007/BF02398436
- E. Odell and T. Schlumprecht. A Banach space block finitely universal for monotone bases, Trans. Amer. Math. Soc. (to appear).
- Thomas Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), no. 1-2, 81–95. MR 1177333, DOI 10.1007/BF02782845
- N. Tomczak-Jaegermann, Banach spaces of type $p$ have arbitrarily distortable subspaces, Geom. Funct. Anal. 6 (1996), no. 6, 1074–1082. MR 1421875, DOI 10.1007/BF02246997
- A. Tsarpalias, A note on the Ramsey property, Proc. Amer. Math. Soc. 127 (1999), no. 2, 583–587. MR 1458267, DOI 10.1090/S0002-9939-99-04518-9
- B. S. Tsirelson. Not every Banach space contains $\ell _p$ or $c_0$, Funct. Anal. Appl. 8 (1974), 138-141.
Bibliographic Information
- S. A. Argyros
- Affiliation: Department of Mathematics, University of Athens, Athens, Greece
- MR Author ID: 26995
- Email: sargyros@atlas.uoa.gr
- V. Felouzis
- Affiliation: Department of Mathematics, University of Athens, Athens, Greece
- Received by editor(s): April 14, 1998
- Received by editor(s) in revised form: June 8, 1999
- Published electronically: January 31, 2000
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 13 (2000), 243-294
- MSC (2000): Primary 46B20, 46B70; Secondary 46B03, 52A07, 03E05
- DOI: https://doi.org/10.1090/S0894-0347-00-00325-8
- MathSciNet review: 1750954