Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2024 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The enumerative geometry of $K3$ surfaces and modular forms
HTML articles powered by AMS MathViewer

by Jim Bryan and Naichung Conan Leung;
J. Amer. Math. Soc. 13 (2000), 371-410
DOI: https://doi.org/10.1090/S0894-0347-00-00326-X
Published electronically: January 31, 2000

Abstract:

Let $X$ be a $K3$ surface, and let $C$ be a holomorphic curve in $X$ representing a primitive homology class. We count the number of curves of geometric genus $g$ with $n$ nodes passing through $g$ generic points in $X$ in the linear system $\left | C\right |$ for any $g$ and $n$ satisfying $C\cdot C=2g+2n-2$. When $g=0$, this coincides with the enumerative problem studied by Yau and Zaslow who obtained a conjectural generating function for the numbers. Recently, Göttsche has generalized their conjecture to arbitrary $g$ in terms of quasi-modular forms. We prove these formulas using Gromov-Witten invariants for families, a degeneration argument, and an obstruction bundle computation. Our methods also apply to $\mathbf {P}^{2}$ blown up at 9 points where we show that the ordinary Gromov-Witten invariants of genus $g$ constrained to $g$ points are also given in terms of quasi-modular forms.
References
  • W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
  • Victor Batyrev. On the Betti numbers of birationally isomorphic projective varieties with trivial canonical bundles. Preprint, alg-geom//9710020.
  • A. Beauville. Counting rational curves on $K3$ surfaces. Preprint alg-geom/9701019, 1997.
  • K. Behrend. Personal communication, 1998.
  • K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), no. 3, 601–617. MR 1431140, DOI 10.1007/s002220050132
  • K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI 10.1007/s002220050136
  • K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), no. 1, 1–60. MR 1412436, DOI 10.1215/S0012-7094-96-08501-4
  • M. Bershadsky, C. Vafa, and V. Sadov, D-branes and topological field theories, Nuclear Phys. B 463 (1996), no. 2-3, 420–434. MR 1393648, DOI 10.1016/0550-3213(96)00026-0
  • Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
  • Xi Chen. Counting curves on $K3$. Ph.D. thesis, Harvard, 1997.
  • Xi Chen. Singularities of rational curves on $K3$ surfaces. Preprint, math.AG/9812050, 1998.
  • Xi Chen. Personal communication, 1999.
  • David A. Cox and Sheldon Katz. Mirror Symmetry and Algebraic Geometry. American Mathematical Society, Providence, RI, 1999.
  • S. K. Donaldson, Yang-Mills invariants of four-manifolds, Geometry of low-dimensional manifolds, 1 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 150, Cambridge Univ. Press, Cambridge, 1990, pp. 5–40. MR 1171888
  • B. Fantechi, L. Göttsche, and D. van Straten, Euler number of the compactified Jacobian and multiplicity of rational curves, J. Algebraic Geom. 8 (1999), no. 1, 115–133. MR 1658220
  • Robert Friedman and John W. Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 27, Springer-Verlag, Berlin, 1994. MR 1288304, DOI 10.1007/978-3-662-03028-8
  • Alexander Givental. Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. (alg-geom/9612001).
  • Lothar Göttsche. A conjectural generating function for numbers of curves on surfaces. Comm. Math. Phys., 196(3):523–533, 1998.
  • Lothar Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), no. 1-3, 193–207. MR 1032930, DOI 10.1007/BF01453572
  • L. Göttsche and R. Pandharipande, The quantum cohomology of blow-ups of $\textbf {P}^2$ and enumerative geometry, J. Differential Geom. 48 (1998), no. 1, 61–90. MR 1622601
  • T. Graber and R. Pandharipande. Localization of virtual classes. Invent. Math., 135(2):487–518, 1999.
  • Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 222093
  • Daniel Huybrechts. Compact hyper-Kähler manifolds: basic results. Invent. Math., 135(1):63–113, 1999.
  • Andrew Kresch. Cycle groups for Artin stacks. math.AG/9810166.
  • P. B. Kronheimer. Some non-trivial families of symplectic structures. Preprint, 1997.
  • Jun Li and Gang Tian. Comparison of the algebraic and the symplectic Gromov-Witten invariants. (alg-geom/9712035).
  • Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119–174. MR 1467172, DOI 10.1090/S0894-0347-98-00250-1
  • Jun Li and Gang Tian. Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds. In Topics in symplectic $4$-manifolds (Irvine, CA, 1996), pages 47–83. Internat. Press, Cambridge, MA, 1998.
  • T.J. Li and A. Liu. Family Seiberg-Witten invariant. Preprint., 1997.
  • Bong H. Lian, Kefeng Liu, and Shing-Tung Yau, Mirror principle. I, Asian J. Math. 1 (1997), no. 4, 729–763. MR 1621573, DOI 10.4310/AJM.1997.v1.n4.a5
  • Yongbin Ruan and Gang Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), no. 2, 259–367. MR 1366548
  • Yongbin Ruan. Virtual neighborhoods and pseudo-holomorphic curves. Preprint alg-geom/9611021., 1996.
  • Bernd Siebert. Gromov-Witten invariants of general symplectic manifolds. Preprint math.DG/9608105., 1996.
  • Bernd Siebert. Algebraic and symplectic Gromov-Witten invariants coincide. Preprint math.AG/9804108., 1998.
  • Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
  • Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
  • Shing-Tung Yau and Eric Zaslow, BPS states, string duality, and nodal curves on $K3$, Nuclear Phys. B 471 (1996), no. 3, 503–512. MR 1398633, DOI 10.1016/0550-3213(96)00176-9
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14N35, 53D45, 14J28
  • Retrieve articles in all journals with MSC (2000): 14N35, 53D45, 14J28
Bibliographic Information
  • Jim Bryan
  • Affiliation: Department of Mathematics, Tulane University, 6823 St. Charles Ave., New Orleans, Louisiana 70118
  • ORCID: 0000-0003-2541-5678
  • Email: jbryan@math.tulane.edu
  • Naichung Conan Leung
  • Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
  • MR Author ID: 610317
  • Email: leung@math.umn.edu
  • Received by editor(s): January 5, 1998
  • Received by editor(s) in revised form: October 18, 1999
  • Published electronically: January 31, 2000
  • Additional Notes: The first author is supported by a Sloan Foundation Fellowship and NSF grant DMS-9802612 and the second author is supported by NSF grant DMS-9626689.
  • © Copyright 2000 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 13 (2000), 371-410
  • MSC (2000): Primary 14N35, 53D45, 14J28
  • DOI: https://doi.org/10.1090/S0894-0347-00-00326-X
  • MathSciNet review: 1750955