Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

The enumerative geometry of $K3$ surfaces and modular forms


Authors: Jim Bryan and Naichung Conan Leung
Journal: J. Amer. Math. Soc. 13 (2000), 371-410
MSC (2000): Primary 14N35, 53D45, 14J28
DOI: https://doi.org/10.1090/S0894-0347-00-00326-X
Published electronically: January 31, 2000
MathSciNet review: 1750955
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ be a $K3$ surface, and let $C$ be a holomorphic curve in $X$ representing a primitive homology class. We count the number of curves of geometric genus $g$ with $n$ nodes passing through $g$ generic points in $X$ in the linear system $\left | C\right |$ for any $g$ and $n$ satisfying $C\cdot C=2g+2n-2$. When $g=0$, this coincides with the enumerative problem studied by Yau and Zaslow who obtained a conjectural generating function for the numbers. Recently, Göttsche has generalized their conjecture to arbitrary $g$ in terms of quasi-modular forms. We prove these formulas using Gromov-Witten invariants for families, a degeneration argument, and an obstruction bundle computation. Our methods also apply to $\mathbf {P}^{2}$ blown up at 9 points where we show that the ordinary Gromov-Witten invariants of genus $g$ constrained to $g$ points are also given in terms of quasi-modular forms.


References [Enhancements On Off] (What's this?)

  • W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574
  • Victor Batyrev. On the Betti numbers of birationally isomorphic projective varieties with trivial canonical bundles. Preprint, alg-geom//9710020.
  • A. Beauville. Counting rational curves on $K3$ surfaces. Preprint alg-geom/9701019, 1997.
  • K. Behrend. Personal communication, 1998.
  • K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), no. 3, 601–617. MR 1431140, DOI https://doi.org/10.1007/s002220050132
  • K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI https://doi.org/10.1007/s002220050136
  • K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), no. 1, 1–60. MR 1412436, DOI https://doi.org/10.1215/S0012-7094-96-08501-4
  • M. Bershadsky, C. Vafa, and V. Sadov, D-branes and topological field theories, Nuclear Phys. B 463 (1996), no. 2-3, 420–434. MR 1393648, DOI https://doi.org/10.1016/0550-3213%2896%2900026-0
  • Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684
  • Xi Chen. Counting curves on $K3$. Ph.D. thesis, Harvard, 1997.
  • Xi Chen. Singularities of rational curves on $K3$ surfaces. Preprint, math.AG/9812050, 1998.
  • Xi Chen. Personal communication, 1999.
  • David A. Cox and Sheldon Katz. Mirror Symmetry and Algebraic Geometry. American Mathematical Society, Providence, RI, 1999.
  • S. K. Donaldson, Yang-Mills invariants of four-manifolds, Geometry of low-dimensional manifolds, 1 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 150, Cambridge Univ. Press, Cambridge, 1990, pp. 5–40. MR 1171888
  • B. Fantechi, L. Göttsche, and D. van Straten, Euler number of the compactified Jacobian and multiplicity of rational curves, J. Algebraic Geom. 8 (1999), no. 1, 115–133. MR 1658220
  • Robert Friedman and John W. Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 27, Springer-Verlag, Berlin, 1994. MR 1288304
  • Alexander Givental. Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. (alg-geom/9612001).
  • Lothar Göttsche. A conjectural generating function for numbers of curves on surfaces. Comm. Math. Phys., 196(3):523–533, 1998.
  • Lothar Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), no. 1-3, 193–207. MR 1032930, DOI https://doi.org/10.1007/BF01453572
  • L. Göttsche and R. Pandharipande, The quantum cohomology of blow-ups of ${\bf P}^2$ and enumerative geometry, J. Differential Geom. 48 (1998), no. 1, 61–90. MR 1622601
  • T. Graber and R. Pandharipande. Localization of virtual classes. Invent. Math., 135(2):487–518, 1999.
  • Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093
  • Daniel Huybrechts. Compact hyper-Kähler manifolds: basic results. Invent. Math., 135(1):63–113, 1999.
  • Andrew Kresch. Cycle groups for Artin stacks. math.AG/9810166.
  • P. B. Kronheimer. Some non-trivial families of symplectic structures. Preprint, 1997.
  • Jun Li and Gang Tian. Comparison of the algebraic and the symplectic Gromov-Witten invariants. (alg-geom/9712035).
  • Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119–174. MR 1467172, DOI https://doi.org/10.1090/S0894-0347-98-00250-1
  • Jun Li and Gang Tian. Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds. In Topics in symplectic $4$-manifolds (Irvine, CA, 1996), pages 47–83. Internat. Press, Cambridge, MA, 1998.
  • T.J. Li and A. Liu. Family Seiberg-Witten invariant. Preprint., 1997.
  • Bong H. Lian, Kefeng Liu, and Shing-Tung Yau, Mirror principle. I, Asian J. Math. 1 (1997), no. 4, 729–763. MR 1621573, DOI https://doi.org/10.4310/AJM.1997.v1.n4.a5
  • Yongbin Ruan and Gang Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), no. 2, 259–367. MR 1366548
  • Yongbin Ruan. Virtual neighborhoods and pseudo-holomorphic curves. Preprint alg-geom/9611021., 1996.
  • Bernd Siebert. Gromov-Witten invariants of general symplectic manifolds. Preprint math.DG/9608105., 1996.
  • Bernd Siebert. Algebraic and symplectic Gromov-Witten invariants coincide. Preprint math.AG/9804108., 1998.
  • Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324
  • Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI https://doi.org/10.1002/cpa.3160310304
  • Shing-Tung Yau and Eric Zaslow, BPS states, string duality, and nodal curves on $K3$, Nuclear Phys. B 471 (1996), no. 3, 503–512. MR 1398633, DOI https://doi.org/10.1016/0550-3213%2896%2900176-9

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14N35, 53D45, 14J28

Retrieve articles in all journals with MSC (2000): 14N35, 53D45, 14J28


Additional Information

Jim Bryan
Affiliation: Department of Mathematics, Tulane University, 6823 St. Charles Ave., New Orleans, Louisiana 70118
ORCID: 0000-0003-2541-5678
Email: jbryan@math.tulane.edu

Naichung Conan Leung
Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
MR Author ID: 610317
Email: leung@math.umn.edu

Received by editor(s): January 5, 1998
Received by editor(s) in revised form: October 18, 1999
Published electronically: January 31, 2000
Additional Notes: The first author is supported by a Sloan Foundation Fellowship and NSF grant DMS-9802612 and the second author is supported by NSF grant DMS-9626689.
Article copyright: © Copyright 2000 American Mathematical Society