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INTRODUCTION

This paper is devoted to establishing a number of theorems at the interface
of symplectic and Riemannian geometry. We try to relate the symplectic way of
measuring size, using so-called capacities, to the classical Riemannian approach,
using the volume. One could and should try to extend these connections to other
metric invariants, for instance those involving curvature.

After recalling some known facts about capacities, we state and prove the main
technical result in the paper: an inequality between the capacity of a set and the
capacities of its symplectic reductions.

The next section is devoted to proving isoperimetric inequalities for submanifolds
of nonzero codimension. It turns out that for Lagrangian submanifolds we have a
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remarkable isoperimetric inequality, relating capacity with n-dimensional volume.
This is the main result in the paper.

We prove this inequality in three different settings, closed Lagrangian submani-
folds in Euclidean space, complex projective space, and Hamiltonian deformations
of the zero section in cotangent bundles.

As an application, we get an estimate between the L norm of a function, and
the L! norm of the determinant of the Hessian. This is related to the Alexandroff-
Bakelman-Pucci inequality. It thus appears that for the Monge-Ampeére equation,
such an inequality is essentially equivalent to an isoperimetric inequality in sym-
plectic geometry.

As another application of our main result, we get an upper bound for the shortest
length of a closed billiard trajectory in a bounded subset of R™ in terms of the
volume of the domain.

We would like to point out that our results connect Riemannian properties to
symplectic properties, and are not applications of symplectic geometry to Riemann-
ian geometry (good examples of this are in [Fer] and [RezI] for instance).

It is a “widespread belief” that capacity is maximal, the volume being given, for
the unit ball[l

We indicate that this may well be the case among convex sets, using John’s
ellipsoid, and prove that there is an isoperimetric inequality relating these two
quantities. Our constant falls short of being an equality in case of the ball, even
though we have no counterexamples. In fact, one of the open problems is to improve
the isoperimetric constant 7, in Theorem Bl from v, = /n to 7, = 1. In the
general case, we give examples of domains with contact type boundary of arbitrarily
small volume and capacity bounded from below. So the usual generalisation from
convex to contact type does not work here, leaving open the question of finding
a simple characterization of domains for which the above isoperimetric inequality
holds (this class of domains includes all symplectic images of convex sets, and
possibly more). The question of whether such an inequality holds for a domain
with restricted contact type is left open

Gromov and Eliashberg proved that the set of symplectic diffeomorphisms is
closed for the C° topology. We may ask what are the topologies on the space of
diffeomorphisms, such that this still holds. The first case that occurs naturally is
for Sobolev norms. Clearly whenever we have the Sobolev embedding W*»? ¢ C°
(i.e. for p > n/k), such a statement holds.

We prove here that it holds for (k,p) = (1/2,2). This is a simple application of
integration by parts, and seems related to “Compensated compactness” of Murat
and Tartar. The main interest of this section is probably to connect two apparently
unrelated questions.

I wish to thank P. Gérard for useful explanations on this last subject. He pointed
out to me that the above result holds not only for (k,p) = (1,2) but also for
(k,p) = (1/2,2). T also thank David Hermann and David Théret for listening to
and commenting on preliminary (and incorrect) versions of the results stated here.

LOf course this depends on the choice of the symplectic capacity. In fact c¢(U) = max{mr? |

J¢ symplectic ¢(B3"(r)) C U} trivially satisfies an isoperimetric inequality, but this is not an
interesting invariant: it is neither connected with periodic orbits, nor with holomorphic curves, or
any other geometrically interesting property. Moreover it vanishes on Lagrangians.

2David Hermann gave a counterexample to this conjecture, thus destroying the “widespread
belief” (see [H3]). There are starshaped domains with arbitrarily small volume and large capacity.
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Alexandru Oancea and an anonymous referee suggested many improvements and
pointed out many mistakes. This work was first presented in a talk at the Geometry
conference held at the Max Planck Institute in Leipzig in November 1997. I wish
to thank the organizers for the invitation, and the audience for comments.

1. SOME BASIC RESULTS IN SYMPLECTIC TOPOLOGY

Let U be a domain in R?”, with the standard symplectic form w = Z?:l dp; Adg .

There are several ways to measure its symplectic size, usually through so-called
symplectic capacities. These are invariants associated to each subset U of R2"
satisfying the following properties:

1. ¢(U) <¢(V) forU CV.

2. ¢(y(U)) = pc(U) for any map v such that ¢*(w) = pw.

3. ¢(B2(r) x R?"=2) = ¢(B?*"(r)) = mr?.

Gromov invented the first capacity, the symplectic width, in [G], even though
the term capacity was invented only later by Ekeland and Hofer (see [EHT]). It is
defined as follows.

Let J(w) be the set of almost complex structures on R?" such that:

e w(z,Jx)>0Vx #0,

o w(Jx,Jy) = w(r,y) Yo,y € R,

For given J, let C(J,U, x) be the set of J-holomorphic curves which are closed
in U and go through the point z € U.

Definition 1.1.

w(U) = sup inf /w.
Jeg(w)EEC(J,U,z) )

Note that the transitivity of the group of symplectic diffeomorphisms implies
that for U connected, the definition does not depend on the choice of x.

There are also the capacities defined using periodic orbits of Hamiltonian sys-
tems, first discovered by Ekeland and Hofer in [EHI].

A hypersurface in R?" is said to be of contact type if there is a transverse con-
formal vector field (i.e. Lew = w) defined near the hypersurface. It is said to be of
restricted contact type if £ extends to an everywhere defined conformal vector field.

Given a hypersurface, we define the characteristic line field to be the line field
ker(wry). The integral curves of the characteristic line field are also the integral
curves on X of the Hamiltonian vector field associated to H, where H is a smooth
function having X as a regular level.

We refer to [EHI, [V2] for the definition of the Ekeland-Hofer capacity, cgp, but
we shall mainly use the following property:

Proposition 1.2. For U an “open set with smooth boundary” of restricted contact
type, there exists a closed characteristic v on OU such that cgy(U) = fv A (where
A =370 pjdg’ is a primitive of w).

Note that this property is also shared by the generating function capacity defined
in [V1].

We will also use the displacement energy, defined as follows in [Ho|: set

1
|| = / sup | H (¢, 2)d;
O ]R27L
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then
d(U) = inf{|[H| | p1(U) N U = 0}.

Here ¢, is the flow of H. The main point is that this number is nonzero (which was
proved in [Ho| and in [V1] independently).
The above invariants are related by the following:

Proposition 1.3. For each open set U with restricted contact type boundary, we
have

dlU) > cgu(U) > w(U).
The first inequality is due to Hofer ([Ho|), the second one to David Hermann

([E1)).

Note that for F' a compact set, we have that d(F') < ¢ implies d(U) < ¢ for some
neighborhood U of F. In other words limp, . p d(F,) < d(F'), where convergence
is for the Hausdorff distance, and d is upper semi-continuous on the set of compact
subsets.

Finally we have the symplectic invariants defined in [V1] for Lagrange subman-
ifolds. Let L C T*N be a Lagrangian submanifold and let S : N x R¥ — R be a
smooth function. We say that S is a generating function of L if

S oS

We shall say that S is quadratic at infinity, if it coincides with a nondegenerate
quadratic form in £ for £ large enough.

According to [LauS], any Lagrangian submanifold Hamiltonianly isotopic to the
zero section has such a generating function. Minimax techniques, as invented by
Lusternik and Schnirelman, allow us to define for each cohomology class « on NV
a critical value ¢(a, S). It is proved in [V1] and [Th] that ¢(«,S) only depends
on L, and we denote it by ¢(a, L). For N = S™, we have only two invariants,
c(1,L) and c(p, L) (p € H™(S™) is the generator), and we define an invariant
v(L) = e(p, L) — ¢(1,L). We refer to [V1] and Appendix A for a study of such
invariants. Note that for H a compact supported Hamiltonian, with time one flow
¢, the graph of ¢, T', is a Lagrangian submanifold of R?" x R2",

2. CAPACITY AND SYMPLECTIC REDUCTION

We shall first estimate the displacement energy of an open set using the dis-
placement energy of its reductions. We shall say that a hypersurface has proper
characteristics if the characteristics are proper curves in the hypersurface.

Proposition 2.1. Let U be a compact set in R?", ¥, a foliation of R®™ by a family
of hypersurfaces with proper characteristics, and U, the symplectic reduction of U
by Xp. Then the following inequality holds:

d(U) < 2-supd(Uy,).

Proof. We fix some strictly positive § and ¢ > sup,, d(U,,). For each z, let us choose
e(x) such that on & €]z — e(z), z + e(x)[ we have ¢, (Ug) N Ug = ) where ¢, is the
time one map of a Hamiltonian H,(¢, z) with norm less than c.

By compactness of the interval, we may find a finite number of points, x;, such
that the |x; — &;, x; + &4 cover the projection of U on the x-axis. We may moreover
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assume, by suitably reducing the €;, that R is covered by a finite number of intervals
Ii,..., Iy such that:
1. I; NI, =0 for |k — j| > 1.
meas(Ij n Ij+1) = 5j S d.
3. For each j there exists ¢; generated by H; of norm less than c, such that for
each z € I;, ¢;(Uy) N U, = 0.

For simplicity we shall assume that Iy =] — 0o, a] and Iy =]b, +0o0l.

We take coordinates z in the symplectic reduction of ¥, and y will be a coordi-
nate dual to x.

Let H be the Hamiltonian

N

H(t,x,y,z) ZX] j(t,2) + f(t, x)

where x; has support in Ij, equals 1in I; — (Ij4+1 U Ij—1), and f is yet to be
determined.

The flow of H has the following properties:

1. Tt preserves the hypersurfaces ¥,, = {z = zo}.

2. For z € I; — (Ij41 U I;_1) it coincides with ¢; and thus maps the projection

of U N X, away from itself, hence U N ¥, away from itself.

3. On I; N 141, the coefficient of 8% in Xp is Hjx'(x) + 5 of = (t,x).

We may assume that on I; N [;11 we have x’(x) bounded by some constant as
close as we wish from 6%'

From the last point, we see that if fl of (t,z)dt > K + £ 3 then ¥, is translated
by at least K in the direction %. Let us choose K large enough, so that U C
{(z,y,2) | ly| < K/2}; then the flow of H still maps U N ¥, away from itself.
We only need that fl 9f (t,z)dt be of the order of magnitude of K + 5 , for x
in an interval of length (5], and this may be achieved with || f|| of the order of
K+ c < Ko+ c, because outside such intervals f is arbitrary (hence can go down
to zero). Since 0 is as small as we please, we see that ||H|| is bounded by 2¢. O

The above argument may be improved to show:

Proposition 2.2. Let U be such that U C R*"~1 x [0,1] and let d(U) be the dis-
placement energy of U. Let ¥, = R?*"=2 x {x} x R and let U, be as above. We
have

d(U)* < Crpa /d(Ux) dz

k41 k+1
where Cry1 < ok 4(_k))"
Proof. Suppose [d(U. 2)fdx < a. Since * — d(U,) is upper semi-continuous,
we have that d(U,)* = infgF, where the g, are continuous functions. Since

Jd(Uy)*dz = inf [g¥(x)dz, we have for n large enough that meas{z | g&(z) >
ct/ k} < 2 and, being a compact set, is covered by a finite number of intervals of
length at most 2.

Since {x | d( 2) > c/FY c {x | gn(z) > c/*}, we have that {z | d(U,) > c'/*}
is covered by a finite set of intervals of length at most ¢. This implies as before
that d(U) < (£ +2-c'/¥). Indeed, for z such that d(U,) < c'/* we move U in
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the z direction, and apply 21l and for the other values of z, we move U in the y
direction of at most 1. For this it is enough that %—I; be of the order of 1, hence the
increase of H in this region is at most 2.

The total increase of H will then be 2 +2-¢!/*. But £ 42 c/* equals (k+1)-

kTR R for ¢ = (ka/Z)kLH. Now Ciy1 = -5 (2 +2-cl/F) =2F. %
Remarks. 1. Note that our statement is not homogeneous, and thus does not hold
without the assumption U C R?*"~2 x R x [0, 1].

2. The proposition extends to the case of a family of hypersurfaces ¥, with
proper characteristic. We must then replace the condition on U by the assumption
that the intersection of any characteristics of ¥, with U has length less than 1 (this
means that the Riemannian length of the portion of the characteristic curve of ¥,
contained in U is less than 1).

3. The limiting case K — oo again yields Proposition -] using the fact that

limg o0 ([d(Us)*)""" = sup, d(U,).

3. VOLUME ESTIMATES FOR LAGRANGE SUBMANIFOLDS

Let L be a Lagrange submanifold in the symplectic manifold (M, w).

The aim of this section is to find a lower bound for the volume of L. Of course
this volume depends on the choice of the metric. We shall in fact be interested in
two types of results.

-the existence of some constant ¢ such that vol,(L) > ¢. This is a statement
independent of the metric. Of course the value of the constant ¢ = ¢(g) does depend
on the metric, g.

-trying to either compute or estimate c(g) for certain special metrics. We are
looking for an estimate invariant by Hamiltonian isotopy, the constant ¢(g) in fact
depends only on the orbit of g under Ham(M).

The first result in this direction is due to Givental-Kleiner-Oh, and proves that
for any Hamiltonian deformation L of RP™ in CP™, the volume of L is greater
than the volume of RP™. The proof follows from the fact that such a Lagrangian
submanifold meets A(RP"™) (the image by an isometry, A, of CP™ of the standard
real projective space). A generalization of the Arnold conjecture, due to Givental,
shows that LNA(RP™) is nonempty and thus Kleiner and Oh conclude, by a Crofton
type formula, that vol(L) is bounded from below by vol(RP™).

However, the above result uses some peculiar features of the symplectic pair
(CP"™,RP™). We shall sece that the existence of a lower bound for the volume of
Lagrangian submanifolds, invariant by Hamiltonian isotopy of the submanifold, is
a general phenomenon.

We shall first prove that in R?" the image by a symplectic map of a given
Lagrangian has its volume bounded from below. We then extend this result to other
symplectic manifolds, as well as to the case of Hamiltonian deformations of the zero
section in T*R". Before we state our main result, we would like to mention that
the definition of the displacement energy may be extended to immersed Lagrange
submanifolds without change, and it is still nonzero. Omne can again apply the
Chekanov result, to show that for immersed L, d(L) is bounded from below by the
smallest area of a holomorphic disc with boundary in L (note that for immersed
L, the disc may well go through double points). Our estimate below still holds for
such immersed manifolds.
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3.1. The case of R?". We first prove the following consequence of Proposition

2T
Theorem 3.1. Let L be a Lagrangian submanifold in R?™. Then we have
d(L)" < p,, vol*(L)

where d(L) is the displacement energy of L, and p, < 9™

The proof is based on the following result. We denote by m, (resp. m,) the
projection on the g (resp. p) coordinates, and by vol(m,(L)) (resp. vol(m,(L))) the
volume of this projection. We denote by vol(L; q) (resp. vol(L;p)) the integral of
the density |dg1 A ... A dg,| (resp. |dp* A ... Adp"|) on L, that is, the volume of
the projection on the ¢ (resp. p) coordinates counting multiplicities. Clearly we
have vol(mq(L)) < vol(L; ¢) (in fact because the projection has degree zero, we have
vol(mg(L)) < 5 vol(L; q)).

Our first step towards the proof of Theorem B.1] is

Proposition 3.2. Let L be a Lagrangian submanifold in U X R™. Then we have
A(L)" < pu(U) vol(my(L)).
Here p,(U) is bounded for U bounded.

Proof. We consider coordinates (p,q) € R™ x R™.

Note that it is enough to prove our proposition for a Lagrangian submanifold
contained in [0, 1]™ x R™, since by rescaling we can always reduce ourselves to this
case. Clearly the result holds for n = 1. Set L(z) = LN {(p,q) | ¢» = =} and let
L, be the reduction of L by {(p,q) | ¢» = z}. Then according to Proposition 1]
arguing by induction, we get the inequalities

/ vol(my(Ly))da — / vol(ry(L(x)))dz < vol(my(L)).
R R

Now, since L, C [0,1]"~ x R"~1, we may use the induction hypothesis, and we
obtain:

d(L)" < C,, - / d(Lx)"_lda: <Cp-pn-1- / vol,—1(mg(Ly))dz
R R

< pn- /}Rvoln_l(ﬂq([/(m)))dm < pp - vol, (mg(L)).

n(n—1)

Here p, = po([0,1]") <[[}_, C; =272 n" O
Proof of Theorem [31l First notice that the inequality of the above proposition
clearly implies
d(L)" < pn(U)vol(L; q).
Let p(U) be defined as the best constant in the above inequality. In other words,

. d(L)™
= —_— L .
V) = supl S [ m () < U)
We just proved that p(U) is finite. It satisfies p(U) < p(V) for U C V and
pA-U) = X"p(U).
We now prove that p(U) is bounded by a constant times the volume of U.
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Let ¢ be a diffeomorphism of R™. It naturally extends to a symplectic diffeo-
morphism ¥ of R™ x R™. Provided % is volume preserving in a neighborhood of
U = m,(L), we have p(¥(U)) = p(U). Indeed, d(¥(L)) = d(L), since ¥ is symplec-
tic and if ) is volume preserving near p, we have that ¥ : {p} x R" — {¢(p)} x R"
is volume preserving (it is the adjoint of di)(p)) and we conclude that vol(¥(L); q) =
vol(L; q). Now given any set U, there is a diffeomorphism of R”, volume preserving
near U, with ¢»(U) C [0, a]™ for any a such that a™ > vol(U). This is obviously true
for U compact, using Moser’s lemma, but we may always reduce ourselves to this
case, since for each L, m,(L) is compact. Thus for vol(U) < 1, p(U) < p,, and by
homogeneity we must have p(U) < p, vol(U).

Finally we get

p

d(L)" < p, vol(L; q) vol(m, (L)) < 2—2 vol?(L).

We actually proved a stronger statement, that is,

Proposition 3.3. With the constant p, defined above, we have:
A(L)" < puvol(Lsq) - vol(my (L)).

Using Chekanov’s inequality between displacement energy and minimal area of
a holomorphic disc ([Chek]), this implies:

Theorem 3.4. Given a Lagrangian submanifold L in R?™ there is a holomorphic
disc D with boundary in L and area less than (p, - vol(L))%/™.

This is really the symplectization (in V.I. Arnold’s terminology) of the usual
isoperimetric inequality.

Remarks. 1. Note that one would like to replace vol(L;q) by vol(my(L)) in the
above inequality. However the above proof will not work. Even though the best
constant in Proposition B2, p(U), satisfies both p(U) < p(V) for U C V and
p(A-U) = N"p(U), it will not be invariant by volume preserving maps.

Indeed for ¢ volume preserving, and ¥ the induced symplectic map, we do not
have vol(m,(¥(L))) = vol(m,(L)), so we may not conclude as above. However,
p(U), the best constant in is invariant by the action of SL(n,R) on R™. Thus
p(U) is a monotone affine invariant. There are many such invariants (beside the
volume), for example the volume of the smallest ellipsoid containing U, or ) (K
where 6(U) = inf{diam(AU) | A € SL(n,R)}.

An important result would be to decide if p(U) is bounded by a constant time
the volume, or at least to identify affine invariants that are upper bounds for p(U).
Clearly S(U )™ is such an invariant, but this is not a very good result.

2. From the definition of d it is clear that d(L) < 7 diam(L)? since U is contained
in a ball of radius diam(U'). But diam(L) and vol(L) are independent quantities (one
of them can be large and the other small). However since p(my(L)) < 0(my (L))" <
diam(L)™ and vol(m,(L)) < C'diam(L)™, Proposition B2 actually improves on both
inequalities.

3. Let us set

v(L) = inf{vol(¢(L)) | ¢ is the time one map of a Hamiltonian flow}.

Then the above proves that v(L) > 0. It thus makes sense to see whether the infi-
mum v(L) is achieved, at least by some submanifold with possible singularities. The
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question of volume minimization was raised by Y.G. Oh in [02]. A Lagrange sub-
manifold stationary for Hamiltonian deformations is called H-minimal. He proved

in particular that the tori T"(rq,... ,r,) product of n circles of radius r; are H-
minimal, and local minima of the volume.

In fact, it follows from the work of Chekanov that the tori T"(rq,... ,r,) and
T(ry,...,r) (we assume r1 < 13 < ... < rpand r] < 74 < ... < 7)) are
Hamiltonianly equivalent if and only if:

-ry =7,

il =m}={ilr;=ri}

- the lattices generated by {r; —r1 | j € [1,n]} and {rj — 7} | j € [1,n]} are
isomorphic.

It follows for example that 7°(1,2,2) and T'(1,2,3) are Hamiltonianly isotopic.
Since the first has volume 473 and the second 673, the second one is certainly not
an absolute minimum. As a result, using the mountain pass principle, there should
be an H-minimal torus which is not a minimum of the volume (however this is
meaningless unless some regularity is proved). It would be interesting to construct
explicitly such tori.

Still one may conjecture that the torus 7'(1,2,...,2) has minimal volume.

Our lower bound does not seem to be sharp enough to imply this. We refer to
the work of Schoen and Wolfson for more on minimal Lagrange submanifolds (and
currents).

4. The Lagrangian case is the only one for which this type of estimate may
hold. Indeed David Hermann exhibited coisotropic submanifolds of any dimension
k greater than n with positive capacity and arbitrarily small k-dimensional volume
(see [H3]). However, it would be extremely interesting to get a bound on capacities
from other metric quantities.

5. Clearly there can be no such inequality in the opposite direction. There are
Lagrange submanifolds of arbitrarily large volume and small capacity (take a torus
S'(e) x S1() c R*). As far as symplectic isoperimetric inequalities are concerned,
in the classical sense, there does not seem to be much room for other types of
inequalities. One type of quantities one could hope to estimate are the “Quermass-
integral”. However, in the case of the torus, for example, all these integrals vanish,
except for the volume.

3.2. Deformations of the zero-section in cotangent bundles. We may apply
this theorem to the case of a Lagrange submanifold Hamiltonianly isotopic to the
zero section, L. We shall work in T*R"™ or rather T%5™ by adding a point at infinity.
We consider a manifold L obtained by applying the flow of a compact supported
Hamiltonian to the zero section, Og». By addition of a point at infinity, we may
assume L to be in T*S™.

To any such Lagrangian submanifold, we may associate the numbers ¢(1, L),
c(u, L), v(L), defined in [V1]] (see Appendix A).

For Ly = ¢+(0gn ), we define the support of the deformation to be

S={z€0rn|3te(0,1] ¢(2) # 2},

d(L) = inf{(N1) | Ny = )4(0g») and Ny N LN S = )} and

d(L) = inf{’y(wl) | ¢1 (Osn) NLNS = @}

In both definitions v; is a compact supported Hamiltonian isotopy starting at
the identity.
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Note that for L = graph(df), we have d(L) = d(L) = v(L) = max f — min f.
This is easy to prove, using N = graph(dg) with |¢g — f| < € small, and such that
g — f has no critical points in the support of f. Using such an N it follows from
the definition of v, and the fact that g is a generating function for N (see [V1]),
that v(N) = maxg — ming. Using the map ¥(q,p) = (¢,p + dg(q)) we get that
d(L) < maxg — ming < max f — min f + ¢.

Moreover, we shall see that for L different from the zero section, d(L) is nonzero

(see Lemma [3.7).
Lemma 3.5. The following inequalities hold:
(1) 1((0s0)) < A(®).

(2) d(L) = d(L).
Proof. The argument is essentially due to David Hermann in his proof of Siburg’s
conjecture ([H2]).

The second inequality obviously follows from the first one. Let I'(¢)) be the graph
of : T(Y) = {(2,¢(2)) | z € T*R"} C T*R" x T*R™.

We shall consider 1(Ogn) as the reduction of I'(¢)) X Ogn, by the coisotropic
submanifold {(z,y,x) € T*R™ x T*R™ x T*R"}. Let C be a coisotropic linear
subspace of the symplectic vector space V & V*.

Lemma 3.6. Assume that C' is transverse to V. Then after applying some linear
symplectic transformation, preserving V, we have the decompositions V. =W @& S
where W=V NC andC=WeW*a {0} S*CWaeW*aSa®S*. Moreover
C/C% may be identified to W & W*.

Proof. The proof is left to the reader, using the transitivity of the action of the
symplectic group on pairs of transverse isotropic subspaces. This is applied to the
isotropic subspaces I = C* and V, which by assumption satisfy TNV = (). O

Now T*R™ x T*R™ x T*R™ may be identified to T*(A) x T*R™. Our coisotropic
submanifold is then the conormal of a factor of A xR™. As aresult, if F': (AxR™)x
R! — R is a generating function quadratic at infinity for a Lagrange submanifold
L C T*(A x R™), then the reduction of L, L¢, has G as a generating function
quadratic at infinity, where G is the restriction of F to (C' N (A x R™)) x R,

According to [V1] (Proposition 5.1) we then have v(G) < (F). This concludes
our proof. O

Lemma 3.7. We have (L) < 2d(L).

Proof. Indeed, let L; be a Hamiltonian isotopy from the zero section to L = L1, let
F; be a generating function quadratic at infinity for L;, and let R be a generating
function quadratic at infinity for N, where N = 91 (0gn») and NN LNS = (). Then
¢(a, Fy — R) does not depend on ¢. Indeed it is associated to points in Ly N N and
this set is independent of ¢ by assumption on N. The standard argument as in [V1]
allows us to conclude that c(a, F; — R) is constant. But we have, again from [V1],
the inequality

C(Ma R — Fl) 2 C(Ma _Fl) + C(]-a R)
Thus y(R) = c(p, R) — ¢(1, R) = c(p, —F1).

Finally, since c(u, —F1) = —c(1, Fy), we have v(N) = v(R) > —c(1, L). Similarly
we prove Y(N) > ¢(u, L), and the inequality 2 - y(N) > v(L). O
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Theorem 3.8. For K compact and L in T*K, we have
Y(L)" < pk (vol(L)).
Proof. The proof is similar to that of Proposition [3:21 We first need to prove that

d(L)F < Cryq /J(Lm)kdac.

This is proved similarly to Proposition The rest of the proof is then the same
as that of the inequality

J(L)" < pre(vol(L))
in Proposition We then conclude using Lemma 371 O
Remark. One can easily prove that in fact v(L)" < px(vol(L;p)), and as before,
that pr < pp vol(K).

Note that already in dimension 2, we see that the dependence is on K, not on
the support of the deformation, S.

Corollary 3.9. We have for any C? function f with support on K

Y Y 82f 1/n
< " . .. .
m}gx|f| < (pn) " vol(K) (/K |det(axiaxj)|da:1 dxn)

Proof. Set L = {(a: df (z)) | € R™}, and use the fact that v(L) = maxyg f—ming f
and vol(L \/det( afjfm 2). By rescaling f to Af and letting A go to

infinity we get that vol(L) is equwalent to

/|dt

while the left hand side is multiplied by A We then apply the above theorem to
conclude our proof. [l

)ldﬂ?l d

Remark. This is a kind of Alexandroff-Bakelman-Pucci estimate (see |[CC|, pp. 27-
28). Such an estimate for the operator det(I + 9; ju)'/™ = M (u) may be rewritten
as

maxu < C(vol(K))Y/™|| M (u)|

for u convex. The fact that the constant is of the type C(vol(K))'/™ is due to
Cabré in [Ca].

Note that here we replaced the convexity by the compact support assumption.
We presumably can get rid of this last assumption by adding a boundary term to
the right hand side.

Ln

Similarly we get estimates for v(.5) as a function of the integral on Xg of the
second partial derivatives of S.

Theorem 3.10. Let S(q,&) be a generating function quadratic at infinity on N x
RF. Assume that S(q &) = Q&) for q outside a compact set K. Set g = {(z,&) |

95 — 0}, Alq, &) = 25, B(x,€) = 25, and C(q.€) = 25
Then we have:

1/n
7(5)é(pn)l/"vol(K)l/”(/2 Idet(A(qvi)—B(q7£)0_1(q7§)3*(q7§))qu1mdqn) -

S
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In particular this means that S has at least one critical point with absolute value
less than the right hand side term.

For a subset K in R" we define K to be the set of midpoints of pairs of points
of K, that is, K = {£2¥ | (z,y) € K?}. Note that for K convex, K =K.

Corollary 3.11. There is a constant Cx = C’(vol(f())l/% such that any symplec-
tic isotopy with support in K satisfies:

1/2n
2(®) < O < [ Idetldw(e) ~ 1a)dan .. danps. ..dpn>
R n
< Ckllv = Id||W1v2"(K)'
Proof. This is left to the reader. O

Corollary 3.12. Let K be a compact set in R*". Then we have
(K) < p(K) vol(R)12 < p,d(K) vol(R)/2n.

Proof. This is a consequence of the definition of v(K), and the fact that the pro-
jection of the graph L of a diffeomorphism of K on the diagonal is contained in K
while its projection on the antidiagonal is contained in {J(*5%) | (x,y) € K} with
affine diameter at most 6(K). O

Note that for K convex §(K) and vol(K) are both equivalent to vol(K). Hence
in this case the right-hand side may be replaced by (vol(K))'/™ (up to a constant).
We refer to section [f] for a simpler approach in the convex case.

Remark. One may ask what happens for L not Hamiltonianly isotopic to the zero
section. First of all we need a new definition of distance, for example we may set

A(L) = sup{y(N1) | Ny = ¢4(O) and supp(¢p¢) N L = (}.

We may prove as before that 4(L) < C vol(L; p)'/™. We just point out that when
L is Hamiltonianly isotopic to the zero section, ¥(L) < 2v(L), as we easily prove
with the same argument as in Lemma B, But the inequality for 4(L) may not be
used to prove the estimate on v(L).

3.3. Generalization to the case of CP". We now deal with the symplectic
manifold CP™. )

We denote by L a Lagrangian submanifold in CP", and by L its lift to S?"*1.
We denote by d(L) the displacement energy in CP", and by d(L) the displacement
energy of L in R?"12,

We clearly have

1. d(L) < d(L),

2. d(L) < w(= d(§*"+1)),
and it is tempting to conjecture:

1. d(L) = 7 = d(L) = +oo (example: L =RP"),

2. d(L) ~ 2arctan(d(L)), or at least f(d(L)) < d(L) for some continuous func-

tion f with f(0) = 0.

The above would imply an estimate between vol(L) and f(d(L)) for some func-

tion f.
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At present we have:

Proposition 3.13.

d(L)" < ppvol®(L).

Proof. Indeed, vol(L) = vol(L) up to a constant factor (equal to the volume of S1).
The proof is then a consequence of Theorem 3.1. O

Remarks. 1. Note that Chekanov’s inequality relating d(L) to o(P, L), the smallest
area of a holomorphic curve with boundary in L, is far from optimal here, since for
RP", d(L) = co while 0(P, L) = 7. Here d(L) = m and this is much better. Can
one generalize this?

2. We refer to Reznikov’s paper [Rez2] for an elementary but sometimes efficient
approach to finding a lower bound for the volume of the images of L by Hamiltonian
deformation. The idea is that if L bounds in (M, w) we may write L = OW"*! and
for n = 2k — 1 the number p(L) = fW wk is—under some topological assumption—
invariant in R/T" where I is the image of Ha(M) under ¢ — [ w". Since W may be
chosen with volume at most C' times the volume of L, for some constant depending
only on the ambient manifold M, we get that when p(L) # 0 the volume of L is
bounded from below.

For example for n odd, if M = CP™,L = RP™, Reznikov proves p(L) = 1/2.
Thus in this case, one recovers the Givental-Kleiner-Oh result by elementary means.

3. The case of cotangent bundles is also interesting. In a previous version we
claimed to prove the case of T*T™ as an easy consequence of the case of Euclidean
space. We refer to current work of Oancea (in particular for 7*S™) for recent
progress on these questions.

4. AN APPLICATION TO BILLIARDS

Theorem 4.1. Let U be a bounded domain with smooth boundary in R™. Then
there exists a billiard trajectory on U of length £ with

" < Oy vol(U).

Remark. The existence of a periodic billiard trajectory is due to [BG]. They show
that a trajectory with at most n + 1 bounces exists, for any domain U and any
metric on U. Most likely one can find a trajectory with at most n + 1 bounces,
satisfying the above length estimate.

Proof. Indeed the periodic trajectories on approximations of W = U x D™ (see [BG])
converge to billiard trajectories on U (we mean the lift to T*U of such trajectories).
And the action of such a trajectory corresponds to the length of the trajectory. So
it is enough to show that d(W) < C - vol(U)*/™.

We may use again Proposition B2, Indeed, we argue once more by induction
to prove that for W = U x [0,1]™ and W(z) = U(x) x [0,1]", where U(x) =
UNR"*" ! x {z} and W, = U(x) x [0,1]", the following inequalities hold:

AWy < C, / A(W,)"1dz < Coup_1 - / vol(U(2))"1dz = pn vol(U).

Now U has a billiard trajectory of area less than d(U x D™) < d(U x [0,1]") <
pn vOL(U)M/™. O
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Remarks. 1. This result is a kind of isosystolic inequality in a simply connected
situation. We propose to call this an isodiastolic inequality since it is an estimate
about the length of geodesic curves obtained by mountain pass, like the great circles
on the two-sphere, and not by minimization as is the case for the usual isosystolic
inequality.

A theorem by C. Croke ([Cr]) proves that for any metric on S? we have a geodesic
of length ¢ with ¢2 < 961 - vol(S?). The proof is rather subtle and beautiful, using
a careful analysis of the Birkhoff curve shortening process. This is purely two-
dimensional, while our results hold in any dimension. However there is also a
result in Croke’s paper about convex hypersurfaces in R" ™1, of the same type (i.e.
¢ < Cypvol(M)). One should mention that our result only holds for some flat
metric, while Croke’s result holds for any metric.

2. Given some metric on M, and a submanifold N of M, let D(M, g) be the
unit disc bundle for the metric g in T*M. Then, the reduction of D(M,g) by the
conormal v(N) = {(q,p) | p=0on N} is the disc bundle D(N, k) for the metric k
such that k(q, p) = inf{g(q,p) | p=p on T,N}. Thus the unit disc bundle for 7,7 N
is on each fiber the projection of the unit disc of Ty M on T;N. Note that this is
not the unit disc bundle for the induced metric, as this would be h(q,p) = g(q,po)
where pg is the unique cotangent vector on M such that pg = p on T;N and pg = 0
on the orthogonal of T, N. Its unit disc bundle is the intersection of the unit disc
bundle of T*M with T*N (the inclusion of T*N into T*M is obtained through the
metric).

D(M,h)

D(M,k)

FIGURE 1. Illustration of Remark 2

From the last remark and the fact that any two metrics on the 2-disc are con-
formally equivalent, we get

Proposition 4.2. Let U be a topological 2-disc. Then for any metric g on U, we
have a billiard trajectory of length £ with

02 < py voly (U)

where py < 32.
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Proof. Indeed, let us consider the metric g(x,y)(dz? 4+ dy?) on U. We shall in this
proof identify the metric with the function. Let

W =D(U,g)={(z,y,&§n) | m(fz +7?) <1}

As above, then W, = D(U(x),g.), where g, is the function g,(y) = g(z,y).
Indeed, here the projection of the unit disc for g on £ = & coincides with the
intersection of the disc with £ = !

We use once more Proposition 2] as above:

d(W) < Cn/d(Wx))dx < Chpn-1- /Vol(U(x),gm)dx = Cppn—1-vol(U,g).
O

Remark. A similar inequality holds whenever the metric varies in a set such that the
ratio between the projections and the sections of D(z,g) C (R™)* remain bounded
by some constant k. In this case, we get a periodic orbit of the billiard problem of
length ¢ with

£ < ppk™vol(U, g).

In particular, for a given metric on a compact manifold there is such an inequality
holding for all metrics conformally equivalent to go, with the same constant.
Note that Theorem [Tl corresponds to the case D(z,g) = [0,1]™ and then k = 1.

5. GEOMETRY OF CONVEX SETS AND PERIODIC ORBITS

Theorem 5.1. Let C be a convex set in R?", let B be the unit ball, and denote by
d any symplectic capacity. Then we have

e ()

where v, < 4n for a general convex set, and v, < n if C is centrally symmetric.

Proof. Let E be the Loewner-Behrend-John ellipsoid, that is, the ellipsoid of mini-
mal volume containing C. According to F. John (see [J]; a proof has been included
for the reader’s convenience in Appendix B) we have:

5 vol(E) < vol(C).

Let 1 < 7o <...<rp_1 <1, be the symplectic axis of E. This means that in
suitable (linear) symplectic coordinates, we have

EZ{($17yla$27y2,--- mfuyn |Z .13 +yz <1}

VO VO 2/n
Then ngg =r? and 1@ =r?.r2....-r2. Thus % < (vo%ggg) .

Now

d(C) _d(E) _ (vol(E)\*" vol(C) \ /™
d<B><d<B><(vol<B>) <”2'(vol<B>) |

Note that for a centrally symmetric set, LnE C C holds, so n? may be replaced
by n. O
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Remarks. 1. Of course, one would like to get an estimate independent of n. It is
reasonable to conjecture that the constant equals one, and is only achieved by the
ball. This sounds like a hard problem.

2. One proves similarly, using the Ekeland-Hofer capacities (see [EH2]), that
Y(C) = (c1(C) - ... - ()™ satisfies

AC) _ 5 [voll&)\V"
v®) =" (ml(B)) '

Remark. As A. Weinstein mentioned long ago, convexity is not a symplectically
invariant property, while our inequality is symplectically invariant. One would
expect, as in the case of periodic orbits, that the result may be extended on any
domain bounded by a hypersurface of contact type.

However this is not true, as the following example shows. But it leaves open the
question of the correct generalisation of convexity. Restricted contact type could
be a candidate.

Example 5.2. Let L be a Lagrangian submanifold. According to Chekanov
([Chekl; see also [V3] for the case of tori, and [Poll| for the rational case) it has
strictly positive displacement energy. But a tubular neighborhood of L has arbitrar-
ily small volume, and positive capacity! However this neighborhood is of restricted
contact type only if L is exact, and this is impossible@ in R2" .

6. COMPENSATED COMPACTNESS AND CLOSURE OF THE SYMPLECTIC GROUP

Let f, g be two C! functions on a symplectic manifold. We denote by {f, g} their
Poisson bracket. It is defined by {f, g} = w(Xy, X,).
In a Darboux chart, where w = Z?=1 dp; A dg’, we have

_N~0f 99 99 OF

Let k,p be positive numbers, and let W*P be the Sobolev spaces of functions
with k distributional derivatives belonging to LP.

Theorem 6.1. Let f,, g, be a sequence of functions such that {f,,gn} = 1. Then
if fo— f and g, — g in W22 we must have {f, g} = 1.

Corollary 6.2. The group of symplectic diffeomorphisms is closed for the W1/22
norm in the set of smooth maps from R2™ into itself.

Proof. Let ¢ be a compactly supported test function. Then
{fm gn}wn(b

R27

= dandgnAwn71¢
R2n

= d(fndgn) A Wnil(b
R27

==/ Fndgn AW A do.
R n

3David Hermann constructed starshaped Reinhardt domains of arbitrarily small volume and
capacity equal to 1 (see [H3|).
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By assumption, f,dg, — fdg weakly, hence doing the same computation back-
wards we have:

im [ (oo = [ (.l
O

Remarks. 1. What about C° convergence? There are several open questions, know-
ing that according to Gromov, if f7, g¥ is a sequence such that

and if f¥ — fi; g7 — g; we have
{fisg5} =i {fi, [i} ={9i,9;} = 0.
2. Is there a counter-example to C° convergence if we only have one pair of

functions f, g7

In other words, is it true that if f? — f and g? — g for the C° topology and
{£7,97} = 1, then {f,g} = 17

3. Can one recover Gromov’s theorem from compensated compactness tech-
niques? Is the following statement true: Let f}’, g} be such that

{Faiy =abs {5y =60 Adl. g5} =0
If of) — i3 B — Biji iy — iy and ff — fi;g] — gj, then
{firg;} = iy {fis £33 = Bigs {9695} = vis-
This should hold (by Gromov’s theorem) if the form szzl aiidqt Adp? + Bidgt A\

dq’ +’yijdpi Adp? is symplectic, that is, nondegenerate. Is one of these two assump-
tions sufficient? Are there counter-examples without these assumptions?

APPENDIX A. A SUMMARY OF SYMPLECTIC GEOMETRY
THROUGH GENERATING FUNCTIONS

We recall some facts about the symplectic invariants defined in [V1]] for Lagrange
submanifolds. Let L C T*N be a Lagrangian submanifold and let S : N x R¥ — R
be a smooth function. We say that S is a generating function of L if

L= {(. o0 €) | g (0.6 =0,

We shall say that S is quadratic at infinity if it coincides with a nondegenerate
quadratic form in £ for £ large enough.

According to [LauS|, any Lagrangian submanifold Hamiltonianly isotopic to the
zero section has such a generating function. The variational methods invented by
Lusternik and Schnirelman allow us to define, for each cohomology class & on N,
a critical value ¢(a, S). Indeed, for ¢ large enough H*(S¢, S7¢) = H*(Q°,Q°) =
H*~%(N) where d is the dimension of the negative eigenspace of @ in the fiber
variables, and the last isomorphism is Thom’s. Thus each cohomology class in NV
may be identified to a class in H*(S¢,57¢), and we set:

c(a,S) =inf{\ | a#0in H*(S*,S7°)}.

It is proved in [V1] and [Th| that for L Hamiltonianly isotopic to the zero section,
¢(a, S) only depends on L, and we denote it by ¢(a, L).
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For N = S™, we have only two invariants, ¢(1, L) and ¢(u, L) (u € H™(S™) is the
generator), and we define an invariant y(L) = ¢(p, L) — ¢(1, L). We refer to [V1]
for a detailed study of such invariants.

The main properties of ¢ and + are as follows (we refer to [V1] for proofs), where
we use the notation Sy @ Sa(x,&1,&2) = S1(x, &) + Sa(z, &2).

Theorem A.1. 1. v(L) = 0 if and only if L coincides with the zero section.
2. c(p,—9) = —c(1,5).
3. C(,LL, S1 9 SQ) > C(]., 51) + C(/L, Sl)
4. c(u, S) is a critical value of S.

One may associate to any open set U a number ¢(U) by setting
c(U)=sup{c(L) | LCAUU x U}

where A is the diagonal in R?™ x R?" and c is measured by identifying this space
with T*A.

This number is an analogue of the Ekeland-Hofer capacity. In fact we may use
c instead of cgg; it will still satisfy Proposition

APPENDIX B. JOHN’S ELLIPSOID

It was pointed out by Albert Fathi that the following proof is to be found ver-
batim in Bollobas’ book [Bollo]. It is nothing else than a modern formulation of
John’s original proof. We give here the proof of John’s theorem, as Bollobas’ book
appears to be hard to find.

Theorem B.1 (John). Let C' be a convex set in R™ with nonempty interior. Let
E be the unique minimal volume ellipsoid containing C. Then we have

1. If C is symmetric,

1
—FECCCE.
ﬁic C

2. In general,
1
-FECcCCE
n

and

Wln/z vol(E) < vol(C).
Proof. The existence and uniqueness of such an ellipsoid, due to Loewner and
Behrend, follows from the following remarks:

1. The equation of an ellipsoid containing C'is (H (u—z),u — ) < 1, depending
on the parameters (z, H) where x is the center of the ellipsoid and H is a
positive definite symmetric matrix. The volume of the ellipsoid is given by
det(H)~, so we want det(H) to be maximal.

2. The existence follows from the fact that C contains a ball of positive volume.
Now the set of all ellipsoids of bounded volume containing a given ball is
compact.

3. If (Hu—z),u—2z) <1and (K(u—vy),u—y) <1on C, we have that for
L =K (L(z—2z),z—z) <1, for z given by Lz = 2(Hz + Ky). Since
H — det(H) is concave, we have det(L) > %(det(H) + det(K)), and the
ellipsoid of minimal volume is unique.
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By a linear change of coordinates, we may assume that the minimal volume
ellipsoid is a sphere of radius 1. We shall provide a lower bound on the volume of
C. For simplicity we may assume that C' is a convex polytope, the convex envelope
of a finite number of extremal pointsE

The general result will follow from a limiting argument.

Assume the unit sphere to be the ellipsoid of minimal volume containing C; C
must touch the sphere at (extremal) points z1,...,x4 such that for all (z¢, H)
small enough, we must have that

Viel,d], (I+H)(xj —xo),x; —xo) < 1implies det(/ + H) < 1

(this expresses the fact that if the ellipsoid (({ + H)(x — xo), (xr — x0)) < 1 contains
C, its volume is larger than 1, and to check that C' is contained in the ellipsoid it is
enough, for (H,zo) small enough, to check that the points z; are in the ellipsoid).

Keeping only first order terms in (xg, H), we get the following linear inequality
on the set of pairs (xo, H):

Vi e [l,d], (Hzj,z;) — 2(xj, o) < 0 implies trace H < 0.
We must then have numbers Ay, ..., Ag such that A\; > 0 and

d
Z N ((Hxj,xj) — 2(x;,z0)) = trace(H),
that is,

d
Z 0 (take H = 0),

d
Z Nj(Hzj,x;) = trace(H) (take o = 0).
j=1

Applying this to H = Id and then to H(x) = (u,x)u we get

d
E )\j =n,
j=1

d
Z)\j (u xj =1.
j=1

These inequalities imply that for any u, there is a j such that

[(u, z5)] =

Bl

If C is centrally symmetric, it contains a ball of radius ﬁ and VOI&% > #

Otherwise we have

d
Z)\J w, )% — tu, x;) — E) =0.
j=1

4 An extremal point is a point that is not the convex combination of two distinct points of C.



430 CLAUDE VITERBO

This implies that for any ¢ there is an i such that (u,2;)? — t(u,2;) — = > 0 and
a k such that (u,zx)? — t{u,zx) — + < 0. In other words the ((u,;))je1,....d
cannot all lie in an interval [o, 8] with - 3 = L. Since [(u,z;)| < 1 we have
max; (u, z;) > + and min;(u,z;) < —1. Thus C contains the ball of radius +.

Let us point out that if we only require a lower bound on the volume of C, we
may improve on the nonsymmetric case as follows.

Set K =C+ —-C ={z —y | z,y € C}, and assume E is the minimal ellipsoid
containing K. Again, after applying a linear transformation we may assume that
E is the unit ball. We have that C C B, and since vol(K) > #vol(B) and

vol(C) > 47" vol(K) we get Xziggg > s O
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