Metric and isoperimetric problems in symplectic geometry
HTML articles powered by AMS MathViewer
- by Claude Viterbo;
- J. Amer. Math. Soc. 13 (2000), 411-431
- DOI: https://doi.org/10.1090/S0894-0347-00-00328-3
- Published electronically: January 31, 2000
- PDF | Request permission
Abstract:
Our first result is a reduction inequality for the displacement energy. We apply it to establish some new results relating symplectic capacities and the volume of a Lagrangian submanifold in a number of different settings. In particular, we prove that a Lagrange submanifold always bounds a holomorphic disc of area less than $C_{n}\operatorname {vol}(L)^{2/n}$, where $C_{n}$ is some universal constant. We also explain how the Alexandroff-Bakelman-Pucci inequality is a special case of the above inequalities. Our inequality on displacement of reductions is also applied to yield a relation between length of billiard trajectories and volume of the domain. Two simple results concerning isoperimetric inequalities for convex domains and the closure of the symplectic group for the $W^{1/2,2}$ norm are included.References
- V. Benci and F. Giannoni, Periodic bounce trajectories with a low number of bounce points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 1, 73–93 (English, with French summary). MR 984148
- Béla Bollobás, Linear analysis, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1990. An introductory course. MR 1087297
- Xavier Cabré, On the Alexandroff-Bakel′man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations, Comm. Pure Appl. Math. 48 (1995), no. 5, 539–570. MR 1329831, DOI 10.1002/cpa.3160480504
- Luis A. Caffarelli and Xavier Cabré, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1351007, DOI 10.1090/coll/043
- Yu. V. Chekanov, Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J. 95 (1998), no. 1, 213–226. MR 1646550, DOI 10.1215/S0012-7094-98-09506-0
- Bang-yen Chen, Geometry of submanifolds and its applications, Science University of Tokyo, Tokyo, 1981. MR 627323
- Christopher B. Croke, Area and the length of the shortest closed geodesic, J. Differential Geom. 27 (1988), no. 1, 1–21. MR 918453
- I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989), no. 3, 355–378. MR 978597, DOI 10.1007/BF01215653
- Ivar Ekeland and Helmut Hofer, Symplectic topology and Hamiltonian dynamics. II, Math. Z. 203 (1990), no. 4, 553–567. MR 1044064, DOI 10.1007/BF02570756
- E. Ferrand. Thèse de Doctorat. Ecole Polytechnique, Palaiseau, 1997
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, DOI 10.1007/BF01388806
- D. Hermann. Thèse de Doctorat. Université de Paris-Sud. Orsay, 1997.
- D. Hermann. Personnal Communication (in french). 1995.
- D. Hermann. Non-equivalence of symplectic capacities for open sets with restricted contact type boundary. Preprint 1998.
- H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), no. 1-2, 25–38. MR 1059642, DOI 10.1017/S0308210500024549
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- François Lalonde and Jean-Claude Sikorav, Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents, Comment. Math. Helv. 66 (1991), no. 1, 18–33 (French). MR 1090163, DOI 10.1007/BF02566634
- François Laudenbach and Jean-Claude Sikorav, Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent, Invent. Math. 82 (1985), no. 2, 349–357 (French). MR 809719, DOI 10.1007/BF01388807
- Yong-Geun Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds, Invent. Math. 101 (1990), no. 2, 501–519. MR 1062973, DOI 10.1007/BF01231513
- Yong-Geun Oh, Volume minimization of Lagrangian submanifolds under Hamiltonian deformations, Math. Z. 212 (1993), no. 2, 175–192. MR 1202805, DOI 10.1007/BF02571651
- Leonid Polterovich, Symplectic displacement energy for Lagrangian submanifolds, Ergodic Theory Dynam. Systems 13 (1993), no. 2, 357–367. MR 1235478, DOI 10.1017/S0143385700007410
- L. Polterovich, The surgery of Lagrange submanifolds, Geom. Funct. Anal. 1 (1991), no. 2, 198–210. MR 1097259, DOI 10.1007/BF01896378
- Alexander G. Reznikov, Affine symplectic geometry. I. Applications to geometric inequalities, Israel J. Math. 80 (1992), no. 1-2, 207–224. MR 1248936, DOI 10.1007/BF02808163
- A. Reznikov. Characteristic Classes in Symplectic Topology. dg-ga/9503007.
- Luis A. Santaló, Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac. MR 433364
- D. Théret. A complete proof of Viterbo’s uniqueness theorem on generating functions. Topology And Its Applications 96-3:249-266, 1999.
- Claude Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), no. 4, 685–710. MR 1157321, DOI 10.1007/BF01444643
- Claude Viterbo, Capacités symplectiques et applications (d’après Ekeland-Hofer, Gromov), Astérisque 177-178 (1989), Exp. No. 714, 345–362 (French). Séminaire Bourbaki, Vol. 1988/89. MR 1040580
- C. Viterbo, A new obstruction to embedding Lagrangian tori, Invent. Math. 100 (1990), no. 2, 301–320. MR 1047136, DOI 10.1007/BF01231188
Bibliographic Information
- Claude Viterbo
- Affiliation: Département de Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay Cedex, France
- Email: viterbo@dmi.ens.fr
- Received by editor(s): March 3, 1998
- Received by editor(s) in revised form: November 18, 1999
- Published electronically: January 31, 2000
- Additional Notes: The author was supported also by UMR 8628 du C.N.R.S. “Topologie et Dynamique" and Institut Universitaire de France.
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 13 (2000), 411-431
- MSC (1991): Primary 53C15; Secondary 58F05, 49Q99, 58F22, 58E10
- DOI: https://doi.org/10.1090/S0894-0347-00-00328-3
- MathSciNet review: 1750956