Rigidity of critical circle mappings II
HTML articles powered by AMS MathViewer
- by Edson de Faria and Welington de Melo;
- J. Amer. Math. Soc. 13 (2000), 343-370
- DOI: https://doi.org/10.1090/S0894-0347-99-00324-0
- Published electronically: November 23, 1999
- PDF | Request permission
Abstract:
We prove that any two real-analytic critical circle maps with cubic critical point and the same irrational rotation number of bounded type are $C^{1+\alpha }$ conjugate for some $\alpha >0$.References
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 357743
- E. de Faria, Asymptotic rigidity of scaling ratios for critical circle mappings, Ergod. Th. & Dynam. Sys. 19 (1999), 995–1035.
- E. de Faria and W. de Melo, Rigidity of critical circle mappings I, J. Eur. Math. Soc. 1.
- Jacek Graczyk and Grzegorz Świa̧tek, Critical circle maps near bifurcation, Comm. Math. Phys. 176 (1996), no. 2, 227–260. MR 1374412
- Michael-Robert Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5–233 (French). MR 538680
- —, Conjugaison quasi-simétrique des homéomorphismes du cercle a des rotations, Manuscript, 1988.
- Linda Keen, Dynamics of holomorphic self-maps of $\textbf {C}^*$, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 9–30. MR 955806, DOI 10.1007/978-1-4613-9602-4_{2}
- M. Lyubich and M. Yampolsky, Dynamics of quadratic polynomials: complex bounds for real maps, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 4, 1219–1255 (English, with English and French summaries). MR 1488251, DOI 10.5802/aif.1598
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- Curtis T. McMullen, Renormalization and 3-manifolds which fiber over the circle, Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. MR 1401347, DOI 10.1515/9781400865178
- Curtis T. McMullen, Self-similarity of Siegel disks and Hausdorff dimension of Julia sets, Acta Math. 180 (1998), no. 2, 247–292. MR 1638776, DOI 10.1007/BF02392901
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
- Dennis Sullivan, Bounds, quadratic differentials, and renormalization conjectures, American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988) Amer. Math. Soc., Providence, RI, 1992, pp. 417–466. MR 1184622
- Grzegorz Świątek, Rational rotation numbers for maps of the circle, Comm. Math. Phys. 119 (1988), no. 1, 109–128. MR 968483
- M. Yampolsky, Complex bounds for critical circle maps, Ergod. Th. & Dynam. Sys. 19 (1999), 227–257.
- J.-C. Yoccoz, Conjugaison analytique des difféomorphismes du cercle, Manuscript, 1989.
Bibliographic Information
- Edson de Faria
- Affiliation: Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, CEP05508-900 São Paulo SP - Brasil
- MR Author ID: 357550
- Email: edson@ime.usp.br
- Welington de Melo
- Affiliation: Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico, CEP22460-320 Rio de Janeiro RJ - Brasil
- Email: demelo@impa.br
- Received by editor(s): November 9, 1998
- Received by editor(s) in revised form: September 20, 1999
- Published electronically: November 23, 1999
- Additional Notes: This work has been partially supported by the Pronex Project on Dynamical Systems, by FAPESP Grant 95/3187-4 and by CNPq Grant 30.1244/86-3.
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 13 (2000), 343-370
- MSC (2000): Primary 37F25; Secondary 37E10, 30D05, 37F40
- DOI: https://doi.org/10.1090/S0894-0347-99-00324-0
- MathSciNet review: 1711394