Représentations $p$-adiques et normes universelles I. Le cas cristallin
HTML articles powered by AMS MathViewer
- by Bernadette Perrin-Riou;
- J. Amer. Math. Soc. 13 (2000), 533-551
- DOI: https://doi.org/10.1090/S0894-0347-00-00329-5
- Published electronically: March 13, 2000
- PDF | Request permission
Abstract:
Let $V$ be a crystalline $p$-adic representation of the absolute Galois group $G_K$ of an finite unramified extension $K$ of $\mathbb {Q}_p$, and let $T$ be a lattice of $V$ stable by $G_K$. We prove the following result: Let $\mathrm {Fil}^1V$ be the maximal sub-representation of $V$ with Hodge-Tate weights strictly positive and $\mathrm {Fil}^1T=T\cap \mathrm {Fil}^1V$. Then, the projective limit of $H^1_g(K(\mu _{p^n}), T)$ is equal up to torsion to the projective limit of $H^1(K(\mu _{p^n}), \mathrm {Fil} ^1T)$. So its rank over the Iwasawa algebra is $[K:\mathbb {Q}_p]\operatorname {dim}\mathrm {Fil}^1 V$.References
- J. Coates and R. Greenberg, Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), no. 1-3, 129–174. MR 1369413, DOI 10.1007/s002220050048
- P. Colmez, Théorie d’Iwasawa des représentations de de Rham, Annals of Math. 148 (1998), 485-571.
- Bernard Dwork, Giovanni Gerotto, and Francis J. Sullivan, An introduction to $G$-functions, Annals of Mathematics Studies, vol. 133, Princeton University Press, Princeton, NJ, 1994. MR 1274045
- Jean-Marc Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, Journées de Géométrie Algébrique de Rennes (Rennes, 1978) Astérisque, vol. 65, Soc. Math. France, Paris, 1979, pp. 3–80 (French). MR 563472
- Michiel Hazewinkel, On norm maps for one dimensional formal groups. I. The cyclotomic $\Gamma$-extension, J. Algebra 32 (1974), 89–108. MR 349692, DOI 10.1016/0021-8693(74)90173-2
- Michiel Hazewinkel, On norm maps for one dimensional formal groups. II. $G$-extensions of local fields with algebraically closed residue field, J. Reine Angew. Math. 268(269) (1974), 222–250. MR 439850, DOI 10.1515/crll.1974.268-269.222
- Michiel Hazewinkel, On norm maps for one dimensional formal groups. III, Duke Math. J. 44 (1977), no. 2, 305–314. MR 439851
- Nicholas M. Katz, Slope filtration of $F$-crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978) Astérisque, vol. 63, Soc. Math. France, Paris, 1979, pp. 113–163. MR 563463
- Ju. I. Manin, Cyclotomic fields and modular curves, Uspehi Mat. Nauk 26 (1971), no. 6(162), 7–71 (Russian). MR 401653
- Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266. MR 444670, DOI 10.1007/BF01389815
- Bernadette Perrin-Riou, Théorie d’Iwasawa $p$-adique locale et globale, Invent. Math. 99 (1990), no. 2, 247–292 (French). MR 1031902, DOI 10.1007/BF01234420
- Bernadette Perrin-Riou, Théorie d’Iwasawa et hauteurs $p$-adiques, Invent. Math. 109 (1992), no. 1, 137–185 (French). MR 1168369, DOI 10.1007/BF01232022
- Bernadette Perrin-Riou, Théorie d’Iwasawa des représentations $p$-adiques sur un corps local, Invent. Math. 115 (1994), no. 1, 81–161 (French). With an appendix by Jean-Marc Fontaine. MR 1248080, DOI 10.1007/BF01231755
- B. Perrin-Riou, Théorie d’Iwasawa et loi explicite de réciprocité, Doc. Math. 4 (1999), 215-269.
- R. Pink, Hodge Structures over function fields, prépublication.
- Peter Schneider, Arithmetic of formal groups and applications. I. Universal norm subgroups, Invent. Math. 87 (1987), no. 3, 587–602. MR 874038, DOI 10.1007/BF01389244
- Burt Totaro, Tensor products in $p$-adic Hodge theory, Duke Math. J. 83 (1996), no. 1, 79–104. MR 1388844, DOI 10.1215/S0012-7094-96-08304-0
Bibliographic Information
- Bernadette Perrin-Riou
- Affiliation: Département de Mathématiques, UMR 8628 du CNRS, bât 425, Université Paris-Sud, F-91405 Orsay Cedex, France
- Email: bpr@geo.math.u-psud.fr
- Received by editor(s): April 29, 1999
- Received by editor(s) in revised form: January 10, 2000
- Published electronically: March 13, 2000
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 13 (2000), 533-551
- MSC (2000): Primary 11S20, 11R23, 11G25
- DOI: https://doi.org/10.1090/S0894-0347-00-00329-5
- MathSciNet review: 1758753