SEMI-INVARIANTS OF QUIVERS AND SATURATION
FOR LITTLEWOOD-RICHARDSON COEFFICIENTS

HARM DERKSEN AND JERZY WEYMAN

1. Introduction

Let Q be a quiver without oriented cycles. Let α be a dimension vector for Q. We denote by $\text{SI}(Q,\alpha)$ the ring of semi-invariants of the set of α-dimensional representations of Q over a fixed algebraically closed field K.

In this paper we prove some results about the set

$$\Sigma(Q,\alpha) = \{ \sigma \mid \text{SI}(Q,\alpha)_\sigma \neq 0 \}.$$

$\Sigma(Q,\alpha)$ is defined in the space of all weights by one homogeneous linear equation and by a finite set of homogeneous linear inequalities. In particular the set $\Sigma(Q,\alpha)$ is saturated, i.e., if $n\sigma \in \Sigma(Q,\alpha)$, then also $\sigma \in \Sigma(Q,\alpha)$.

These results, when applied to a special quiver $Q = T_{n,n,n}$ and to a special dimension vector, show that the GL_n-module V_λ appears in $V_\mu \otimes V_\nu$ if and only if the partitions λ, μ and ν satisfy an explicit set of inequalities. This gives new proofs of the results of Klyachko ([7, 3]) and Knutson and Tao ([8]).

The proof is based on another general result about semi-invariants of quivers (Theorem 1). In the paper [10], Schofield defined a semi-invariant c_W for each indecomposable representation W of Q. We show that the semi-invariants of this type span each weight space in $\text{SI}(Q,\alpha)$. This seems to be a fundamental fact, connecting semi-invariants and modules in a direct way. Given this fact, the results on sets of weights follow at once from the results in another paper of Schofield [11].

2. The results

A quiver Q is a pair $Q = (Q_0, Q_1)$ consisting of the set of vertices Q_0 and the set of arrows Q_1. Each arrow a has its head ha and tail ta, both in Q_0:

$$ta \xrightarrow{a} ha.$$

We fix an algebraically closed field K. A representation (or a module) V of Q is a family of finite dimensional vector spaces $\{ V(x) \mid x \in Q_0 \}$ and of linear maps
$V(a) : V(ta) \to V(ha)$. The dimension vector of a representation V is the function
$d(V) : Q_0 \to \mathbb{Z}_{\geq 0}$ defined by $d(V)(x) := \dim V(x)$. The dimension vectors lie in
the space Γ of integer-valued functions on Q_0. A morphism $\phi : V \to V'$ of two
representations is a collection of linear maps $\phi(x) : V(x) \to V'(x)$, $x \in Q_0$, such
that for each $a \in Q_1$ we have $\phi(ha)V(a) = V'(a)\phi(ta)$. We denote the linear space
of morphisms from V to V' by $\text{Hom}_Q(V, V')$.

A path p in Q is a sequence of arrows $p = a_1, \ldots, a_n$ such that $ha_i = ta_{i+1}$
$(1 \leq i \leq n - 1)$. We define $tp = ta_1, hp = ha_n$. We also have the trivial path
e(x)$ from x to x. If V is a representation and $p = a_1, \ldots, a_n$, then we define
$V(p) := V(a_n)V(a_{n-1}) \cdots V(a_1)$. We assume throughout the paper that Q has no
oriented cycles, i.e., there are no paths $p = a_1, \ldots, a_n$ such that $ta_1 = ha_n$.

For representations V and W of Q there is a canonical exact sequence (1)

\[
0 \to \text{Hom}_Q(V, W) \to \bigoplus_{x \in Q_0} \text{Hom}(V(x), W(x)) \to \bigoplus_{a \in Q_1} \text{Hom}(V(ta), W(ha)) \to \text{Ext}_Q(V, W) \to 0.
\]

The map i is the obvious inclusion, the map d^V_W is given by
\[
\{f(x)\}_{x \in Q_0} \mapsto \{f(ha)V(a) - W(a)f(ta)\}_{a \in Q_1},
\]

and the map p constructs an extension of the representations V and W by adding
the maps $V(ta) \to W(ha)$ to the direct sum representation $V \oplus W$.

For $\alpha, \beta \in \Gamma$ we define the Euler inner product
\[
\langle \alpha, \beta \rangle = \sum_{x \in Q_0} \alpha(x)\beta(x) - \sum_{a \in Q_1} \alpha(ta)\beta(ha).
\]

It follows from (1) that $\langle d(V), d(W) \rangle = \dim_K \text{Hom}_Q(V, W) - \dim_K \text{Ext}_Q(V, W)$.

For a dimension vector α we denote by
\[
\text{Rep}(Q, \alpha) := \bigoplus_{a \in Q_1} \text{Hom}(K^\alpha(ta), K^\alpha(ha))
\]

the vector space of α-dimensional representations of Q. The group
\[
\text{GL}(Q, \alpha) := \prod_{x \in Q_0} \text{GL}(\alpha(x))
\]

and its subgroup
\[
\text{SL}(Q, \alpha) = \prod_{x \in Q_0} \text{SL}(\alpha(x))
\]

act on $\text{Rep}(Q, \alpha)$ in an obvious way. We are interested in the ring of semi-invariants
\[
\text{SI}(Q, \alpha) := K[\text{Rep}(Q, \alpha)]_{\text{SL}(Q, \alpha)}.
\]
The ring $\text{SI}(Q, \alpha)$ has a weight space decomposition

$$\text{SI}(Q, \alpha) = \bigoplus_{\sigma} \text{SI}(Q, \alpha)_{\sigma}$$

where σ runs through the (one-dimensional irreducible) characters of $\text{GL}(Q, \alpha)$ and

$$\text{SI}(Q, \alpha)_{\sigma} = \{ f \in K[\text{Rep}(Q, \alpha)] \mid g(f) = \sigma(g) f \ \forall g \in \text{GL}(Q, \alpha) \}.$$

Suppose that σ lies in the dual space $\Gamma^* := \text{Hom}(\Gamma, \mathbb{Z})$. For each dimension vector α we can associate to σ a character of $\text{GL}(Q, \alpha)$ defined as

$$\prod_{x \in Q_0} \sigma^{d_x(e_x)}$$

where d_x is the determinant function on $\text{GL}(\alpha(x))$ and e_x is the dimension vector defined by

$$e_x(y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{otherwise.} \end{cases}$$

In this way we will identify characters with Γ^*. Sometimes, for convenience, we will write $\sigma(x)$ instead of $\sigma(e_x)$ (and treat σ as an element of Γ).

Let us choose the dimension vectors α and β in such way that $\langle \alpha, \beta \rangle = 0$. Then for every $V \in \text{Rep}(Q, \alpha)$ and $W \in \text{Rep}(Q, \beta)$ the matrix of d_W^V will be in a square matrix. Following [10] we can therefore define the semi-invariant c of the action of $\text{GL}(Q, \alpha) \times \text{GL}(Q, \beta)$ on $\text{Rep}(Q, \alpha) \times \text{Rep}(Q, \beta)$ by $c(V, W) := \det d_W^V$. The value of the determinant depends on the choices of bases, so c is well-defined up to a scalar. Notice that the semi-invariant c vanishes at the point (V, W) if and only if $\text{Hom}_Q(V, W) \neq 0$ which is equivalent to $\text{Ext}_Q(V, W) \neq 0$. For a fixed V the restriction of c to $\{V\} \times \text{Rep}(Q, \beta)$ defines a semi-invariant c^V in $\text{SI}(Q, \beta)$. Schofield proves ([10], Lemma 1.4) that the weight of c^V equals $\langle \alpha, \cdot \rangle \in \Gamma^*$ which is defined as $\gamma \mapsto \langle \alpha, \gamma \rangle$. Similarly, for a fixed W the restriction of c to $\text{Rep}(Q, \alpha) \times \{W\}$ defines a semi-invariant c_W in $\text{SI}(Q, \alpha)$ of weight $-\langle \cdot, \beta \rangle$ ([10], Lemma 1.4). If $V, V' \in \text{Rep}(Q, \alpha)$ and $V \cong V'$, then V and V' are in the same $\text{GL}(Q, \alpha)$-orbit, and c^V and $c^{V'}$ are equal up to a constant scalar. Semi-invariants of the types c^V and c_W are well-defined up to a scalar. These semi-invariants have the following properties.

Lemma 1. Suppose that V, V', V'' and W, W', W'' are representations of Q such that $\langle \underline{d}(V), \underline{d}(W) \rangle = 0$, and that there are exact sequences

$$0 \rightarrow V' \rightarrow V \rightarrow V'' \rightarrow 0, \quad 0 \rightarrow W' \rightarrow W \rightarrow W'' \rightarrow 0.$$

a) If $\langle \underline{d}(V'), \underline{d}(W) \rangle < 0$, then $c^V(W) = 0$;

b) If $\langle \underline{d}(V'), \underline{d}(W) \rangle = 0$, then $c^V(W) = c^V(W)c^{V''}(W)$;

c) If $\langle \underline{d}(V), \underline{d}(W') \rangle > 0$, then $c^V(W) = 0$;

d) If $\langle \underline{d}(V), \underline{d}(W') \rangle = 0$, then $c^V(W) = c^V(W')c^V(W'')$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Consider the following commutative diagram with exact columns:

\[
\begin{array}{ccc}
0 & \rightarrow & 0 \\
\downarrow & & \downarrow \\
\bigoplus_{x \in Q_0} \text{Hom}(V''(x), W(x)) & \xrightarrow{d''_W} & \bigoplus_{a \in Q_1} \text{Hom}(V''(ta), W(ha)) \\
\downarrow & & \downarrow \\
\bigoplus_{x \in Q_0} \text{Hom}(V(x), W(x)) & \xrightarrow{d'_W} & \bigoplus_{a \in Q_1} \text{Hom}(V(ta), W(ha)) \\
\downarrow & & \downarrow \\
\bigoplus_{x \in Q_0} \text{Hom}(V'(x), W(x)) & \xrightarrow{d'''_W} & \bigoplus_{a \in Q_1} \text{Hom}(V'(ta), W(ha)) \\
\downarrow & & \downarrow \\
0 & \rightarrow & 0
\end{array}
\]

If \(\langle d(V'), d(W) \rangle = 0 \), then \(d''_W, d'_W \) and \(d'''_W \) are all represented by square matrices. It follows that \(e^V(W) = e^{V'}(W)e^{V''}(W) \). So b) follows and d) goes similarly. If \(\langle d(V'), d(W) \rangle < 0 \), then \(d''_W \) cannot be surjective, hence \(d'_W \) is not surjective. Now a) follows and c) goes similarly.

Our main result is that the semi-invariants of type \(e^V \) (resp. \(e_W \)) span all the weight spaces in the rings \(\text{SI}(Q, \alpha) \).

Theorem 1. Let \(Q \) be a quiver without oriented cycles and let \(\beta \) be a dimension vector. The ring of semi-invariants \(\text{SI}(Q, \beta) \) is a \(K \)-linear span of semi-invariants \(e^V \) with \(\langle d(V), \beta \rangle = 0 \). The analogous result is true for the semi-invariants \(e_W \).

After this paper was submitted we learned about the paper \([12]\) where among other things the authors give another proof of Theorem 1 under the assumption that the characteristic of \(K \) is zero.

We will prove Theorem 1 in Section 4.

Remark 1. If \(V = V_1 \oplus V_2 \) is decomposable, then by Lemma 1 we have \(e^V = 0 \) if \(\langle d(V_1), \beta \rangle \neq 0 \), and \(e^V = e^{V_1}e^{V_2} \) if \(\langle d(V_1), \beta \rangle = 0 \).

The algebra \(\text{SI}(Q, \beta) \) is generated by all \(e^V \) where \(V \) is indecomposable. Generators of \(\text{SI}(Q, \beta) \) therefore can be found in the degrees \(\langle \alpha, \cdot \rangle \) such that a general representation of dimension \(\alpha \) is indecomposable. By \([5]\) this is equivalent to \(\alpha \) being a Schur root.

Remark 2. If \(\text{Rep}(Q, \beta) \) has a dense \(\text{GL}(Q, \beta) \)-orbit, then Schofield showed in \([10]\) that the invariants of type \(e^V \) with \(V \) indecomposable generate \(\text{SI}(Q, \beta) \) (which is a polynomial ring in this case).

Theorem 1 has the following remarkable consequence.

Corollary 1 (Reciprocity Property). Let \(\alpha, \beta \) be two dimension vectors for the quiver \(Q \). Assume that \(\langle \alpha, \beta \rangle = 0 \). Then

\[
\dim_K \text{SI}(Q, \beta)_{\langle \alpha, \cdot \rangle} = \dim_K \text{SI}(Q, \alpha)_{\langle \cdot, \beta \rangle}.
\]

Proof. Let \(V_1, \ldots, V_s \) be the modules of dimension \(\alpha \) such that \(e^{V_1}, \ldots, e^{V_s} \) form a basis of \(\text{SI}(Q, \beta)_{\langle \alpha, \cdot \rangle} \). These are linearly independent polynomials on \(\text{Rep}(Q, \beta) \) so there exist \(s \) representations \(W_1, \ldots, W_s \) in \(\text{Rep}(Q, \beta) \) such that \(\det(e^{V_j}(W_j))_{1 \leq i, j \leq s} \)
is not zero. But $c^V(W_j) = c_{W_j}(V_i)$ and this means that the semi-invariants c_{W_1}, \ldots, c_{W_s} are linearly independent. This proves that
\[
\dim_K \text{SI}(Q, \beta)(\alpha, \gamma) \leq \dim_K \text{SI}(Q, \alpha)(\gamma, \beta).
\]
The other inequality is proven in exactly the same way.

In the remainder of this section we investigate the consequences of Theorem 1. First we recall the main results of [11]. They can be summarized as follows.

We say that for two dimension vectors α, β the space $\text{Hom}_Q(\alpha, \beta)$ (respectively $\text{Ext}_Q(\alpha, \beta)$) vanishes generically if and only if for general representations V, W of dimensions α, β respectively we have $\text{Hom}_Q(V, W) = 0$ (resp. $\text{Ext}_Q(V, W) = 0$). We also write $\alpha \rightarrow \beta$ if a general representation of dimension β has a subrepresentation of dimension α.

Theorem 2 (Schofield). Let α and β be two dimension vectors for the quiver Q.

a) $\text{Ext}_Q(\alpha, \beta)$ vanishes generically if and only if $\alpha \rightarrow \alpha + \beta$;

b) $\text{Ext}_Q(\alpha, \beta)$ does not vanish generically if and only if $\beta' \rightarrow \beta$ and $(\alpha, \beta - \beta') < 0$ for some dimension vector β'.

Part a) is proven in Section 3 of [11], and part b) is proven in Section 5.

Remark 3. Suppose that V and W are general modules of dimension α and β respectively, such that $(\alpha, \beta) = 0$. The condition in b) is equivalent to $\exists \beta' \beta' \rightarrow \beta$ such that $(\alpha, \beta') > 0$. If $c^V(W) = 0$, then W must have a submodule W' such that $(\alpha, d(W')) > 0$. This means that the converse of Lemma 1.c) is true for general V and W.

Theorem 3. Let Q be a quiver without oriented cycles and let β be a dimension vector. The semigroup $\Sigma(Q, \beta)$ is the set of all $\sigma \in \Gamma$ such that $\sigma(\beta) = 0$ and $\sigma(\beta') \leq 0$ for all β' such that $\beta' \rightarrow \beta$. Thus this condition is provided by one linear homogeneous equality and finitely many linear homogeneous inequalities. In particular the set $\Sigma(Q, \beta)$ is saturated in the lattice Γ.

Proof. Suppose that $\sigma \in \Gamma^*$. We can write $\sigma = (\alpha, \cdot)$ with $\alpha \in \Gamma$.

We will first assume that α is a dimension vector, i.e., $\alpha(x) \geq 0$ for all $x \in Q_0$. It follows from Theorem 1 that $\text{SI}(Q, \beta)(\alpha, \cdot)$ is non-zero if and only if there exists a representation V of dimension α such that c^V is not zero, which is equivalent to $\sigma(\beta) = (\alpha, \beta) = 0$ and $\text{Ext}_Q(\alpha, \beta)$ vanishing generically. By part b) of Theorem 2 $\text{Ext}_Q(\alpha, \beta)$ vanishes generically if and only if for all β' such that $\beta' \rightarrow \beta$ we have $(\alpha, \beta - \beta') \geq 0$. This means that for all β' such that $\beta' \rightarrow \beta$ we have $\sigma(\beta') = (\alpha, \beta') \leq 0$. We conclude that $\text{SI}(Q, \beta)(\alpha, \cdot) \neq 0$ if and only if $\sigma(\beta) = 0$ and $\sigma(\beta') \leq 0$ for all $\beta' \rightarrow \beta$.

If α is not a dimension vector, then $\text{SI}(Q, \beta)(\alpha, \cdot) = 0$ for all integers $n > 0$. Suppose that $W \in \text{Rep}(Q, \beta)$. From [3] it follows that either $\sigma(d(W)) \neq 0$ or there exists a submodule W' of W such that $\sigma(d(W')) > 0$. If W is in general position, then we obtain $\sigma(\beta) \neq 0$ or $\sigma(\beta') > 0$ for some $\beta' \rightarrow \beta$ (see also Remark 5).

Remark 4. Schofield in [11] gives an algorithm allowing one to determine the set of inequalities in Theorem 2 inductively. This algorithm is not very efficient.

Remark 5. A module $W \in \text{Rep}(Q, \beta)$ is called σ-stable if and only if there exist an $n > 0$ and an $f \in \text{SI}(Q, \beta)(\alpha, \cdot)$ such that $f(W) \neq 0$. King proved in [6] that a module
W ∈ Rep(Q, β) is σ-stable if and only if σ(W') ≤ 0 for all submodules W' of W. Applied to a general representation W of dimension β this gives us the equivalence:

\[\exists n > 0 \text{ SI}(Q, \beta)_{n \sigma} \neq 0 \iff \sigma(\beta) = 0 \text{ and } \forall \beta' \beta' \hookrightarrow \beta \text{ we have } \sigma(\beta') \leq 0. \]

This shows that the saturation of Σ(Q, β) is given by linear inequalities but it does not show that Σ(Q, β) is saturated.

Remark 6. In Theorem 3 instead of considering all β' with β' ⊂ β we only need to consider those β' such that the general representation of dimension β' is indecomposable, which is equivalent to β' being a Schur root. Still, the set of inequalities obtained in this way may not be a minimal set of inequalities as we will see in the next example.

Example 1. Let Q be the quiver

\[
\begin{array}{ccc}
1 & \\
\downarrow & \\
4 & \rightarrow & 5 \\
\uparrow & \\
3 & \leftarrow & 2
\end{array}
\]

and let β be the dimension vector

\[
1 \ 2 \ 1 \ 1 .
\]

For a general representation V of Q with dimension vector β, the dimension vectors of indecomposable submodules are:

\[
\begin{array}{cccccccc}
0 & 1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 & 2 & 0 & 1 & 2 & 1 & 0 & 2 & 1 \\
1 & 1 & 1 & 0 & 1 & \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & \\
0 & 1 & 0 & 0 \\
0 &
\end{array}
\]

Let σ be the weight given by σ(α) = \(\sum_{i=1}^{5} a_i \alpha(i) \), in other words

\[\sigma = \begin{bmatrix} a_1 \\ a_4 \\ a_5 \\ a_2 \\ a_3 \end{bmatrix}. \]

We investigate when SI(Q, β)_{n} \neq 0. First of all we must have σ(β) = 0, so \(a_1 + a_2 + a_3 + a_4 + 2a_5 = 0 \). In particular \(a_1 + a_2 + a_3 + a_4 \) must be even. The
indecomposable submodules listed above correspond to the inequalities (using $a_5 = -(a_1 + a_2 + a_3 + a_4)/2$):

\[a_1 \geq 0, \quad a_2 \geq 0, \quad a_3 \geq 0, \quad a_4 \geq 0, \]
\[a_1 \leq a_2 + a_3 + a_4, \quad a_2 \leq a_1 + a_3 + a_4, \quad a_3 \leq a_1 + a_2 + a_4, \quad a_4 \leq a_1 + a_2 + a_3, \]
\[a_1 + a_2 + a_3 + a_4 \geq 0. \]

The last inequality is redundant.

In the next section we will see how semi-invariants can be interpreted in terms of tensor products of modules of the general linear group. This particular example shows that for a 2-dimensional vector space U, the tensor product of symmetric powers $S_{a_1}(U) \otimes S_{a_2}(U) \otimes S_{a_3}(U) \otimes S_{a_4}(U)$ contains a non-trivial $\text{SL}(U)$-invariant subspace if and only if $a_1 + a_2 + a_3 + a_4$ is even and the inequalities (2) hold. In this case, the inequalities are obvious from the Clebsch-Gordan formula.

3. Application to Littlewood-Richardson coefficients

Let us apply Theorem 3 in the following special case. Let us define the quiver $Q = T_{n,n,n}$ as follows:

\[x_1 \to x_2 \to \ldots \to x_{n-1} \to u \leftarrow y_{n-1} \leftarrow \ldots \leftarrow y_2 \leftarrow y_1 \]
\[\uparrow \quad z_{n-1} \]
\[\uparrow \quad z_2 \]
\[\uparrow \quad z_1 \]

Let us choose the dimension vector $\beta(x_i) = \beta(y_i) = \beta(z_i) = i$ for $i = 1, \ldots, n-1$, $\beta(u) = n$. The following proposition is a direct application of Cauchy’s formula and is a standard calculation in representation theory.

Proposition 1. The weight space $\text{SI}(T_{n,n,n}, \beta)_\sigma$ is isomorphic to the space of $\text{SL}(U)$-invariants in the triple tensor product $S_{\lambda}(U) \otimes S_{\mu}(U) \otimes S_{\nu}(U)$ of Schur functors on U, where U is the vector space of dimension n, and λ, μ, ν are partitions whose conjugate partitions are given as follows:

\[\lambda' = ((n-1)^{\sigma(x_{n-1})}, (n-2)^{\sigma(x_{n-2})}, \ldots, 1^{\sigma(x_1)}), \]
\[\mu' = ((n-1)^{\sigma(y_{n-1})}, (n-2)^{\sigma(y_{n-2})}, \ldots, 1^{\sigma(y_1)}), \]
\[\nu' = ((n-1)^{\sigma(z_{n-1})}, (n-2)^{\sigma(z_{n-2})}, \ldots, 1^{\sigma(z_1)}). \]

Here $\sigma(q)$ is defined as $\sigma(e_q)$ where the dimension vector e_q is given by $e_q(q) = 1$ and $e_q(p) = 0$ if $p \neq q$.

Proof. Let us denote by a_i (resp. b_i, c_i) the arrow in $T_{n,n,n}$ with $ta_i = x_i, ha_i = x_{i+1}$ (resp. $tb_i = y_i, hb_i = y_{i+1}, tc_i = z_i, hc_i = z_{i+1}$) for $1 \leq i \leq n - 1$. The space $\text{Rep}(T_{n,n,n}, \beta)$ can be identified with

\[\bigoplus_{1 \leq i \leq n-1} (\text{Hom}(V(x_i), V(x_{i+1})) \oplus \text{Hom}(V(y_i), V(y_{i+1})) \oplus \text{Hom}(V(z_i), V(z_{i+1}))) \]

where we write $x_n = y_n = z_n = u$.

The Cauchy formula \([1, \S A.1]\) gives the decomposition of \(K[\text{Rep}(T_{n,n,n}, \beta)]\) as a direct sum over the \(3(n-1)\)-tuples of partitions
\[
((\alpha^i)_{1 \leq i \leq n-1}, (\beta^i)_{1 \leq i \leq n-1}, (\gamma^i)_{1 \leq i \leq n-1})
\]
of the summands
\[
\bigotimes_{1 \leq i \leq n-1} (S_\alpha V(x_i) \otimes S_\alpha V(x_{i+1})^* \otimes S_\beta V(y_i) \otimes S_\beta V(y_{i+1})^* \otimes S_\gamma V(z_i) \otimes S_\gamma V(z_{i+1})^*).
\]
Let us denote \(H = \prod_{1 \leq i \leq n-1} (\text{SL}(V(x_i)) \times \text{SL}(V(y_i)) \times \text{SL}(V(z_i)))\). Then it follows from the Littlewood-Richardson Rule \([1, \S A.1]\) that the summand corresponding to the \(3(n-1)\)-tuple
\[
((\alpha^i)_{1 \leq i \leq n-1}, (\beta^i)_{1 \leq i \leq n-1}, (\gamma^i)_{1 \leq i \leq n-1})
\]
contains an \(H\)-invariant if and only if we have for each \(i, 1 \leq i \leq n-1,
\]
\[
(\alpha^i)' = (i)^{\sigma(x_i)}, (i-1)^{\sigma(x_{i-1})}, \ldots, 1^{\sigma(x_1)},
\]
\[
(\beta^i)' = (i)^{\sigma(y_i)}, (i-1)^{\sigma(y_{i-1})}, \ldots, 1^{\sigma(y_1)},
\]
\[
(\gamma^i)' = (i)^{\sigma(z_i)}, (i-1)^{\sigma(z_{i-1})}, \ldots, 1^{\sigma(z_1)}
\]
for some non-negative numbers \(\sigma(x_i), \sigma(y_i), \sigma(z_i)\). Moreover, if these conditions are satisfied, then the space of \(H\)-invariants is isomorphic to
\[
S_{\alpha^n-V(u)^*} \otimes S_{\beta^n-V(u)^*} \otimes S_{\gamma^n-V(u)^*}.
\]
Therefore the space of \(\text{SL}(T_{n,n,n}, \beta)\)-semi-invariants can be identified with the space of \(\text{SL}(V(u))\)-invariants in the above triple tensor product.

Corollary 2. The set of triples of partitions \((\lambda, \mu, \nu)\) such that the space of \(\text{SL}(U)\)-invariants in \(S_\lambda(U) \otimes S_\mu(U) \otimes S_\nu(U)\) is non-zero, in the space of triples of weights is given by a finite set of linear homogeneous inequalities in the parts of \(\lambda, \mu, \nu\) and the condition that \(|\lambda| + |\mu| + |\nu|\) is divisible by \(n := \text{dim } U\).

Proof. Let \(\sigma \in \Gamma\) be given by (3) and let \(\sigma(\beta) = 0\). All components of \(\sigma\) are integers only if \(|\lambda| + |\mu| + |\nu|\) is divisible by \(n\), because
\[
0 = \sigma(\beta) = n\sigma(u) + \sum_{i=1}^{n-1} i(\sigma(x_i) + \sigma(y_i) + \sigma(z_i)) = n\sigma(u) + |\lambda| + |\mu| + |\nu|.
\]
By Theorem (3) and Proposition (1) those \((\lambda, \mu, \nu)\) for which \(\text{SL}(T_{n,n,n}, \beta)\) are given by \(\sigma(\beta) = 0\) and a finite set of homogeneous linear inequalities in \(\sigma(x_i), \sigma(y_i), \sigma(z_i), 1 \leq i \leq n-1\). These inequalities can be written as inequalities in the parts of \(\lambda, \mu, \nu\).

4. **The Proof of Theorem (1)**

We define \([x, y]\) to be the vector space with the basis formed by paths from \(x\) to \(y\). We assumed that \(Q\) has no oriented cycles, so the spaces \([x, y]\) are finite dimensional.

The indecomposable projective representations are in a bijection with \(Q_0\). The indecomposable projective corresponding to \(x\) is defined by
\[
P_x(y) = [x, y], \quad P_x(a) = a \circ [x, ta] \to [x, ha],
\]
where \(P_x(a) \) is given by the composition \(p \mapsto a \circ p \). We have \(\text{Hom}_Q(P_x, V) = V(x) \).
In particular \(\text{Hom}_Q(P_x, P_y) = [y, x] \).

We choose a numbering \(Q_0 = \{x_1, \ldots, x_n\} \) of vertices of \(Q \) such that for every \(\alpha \in Q_1 \) with \(t\alpha = x_i, h\alpha = x_j \), we have \(i < j \). Let \(b_{i,j} \) be the number of arrows \(\alpha \in Q_1 \) with \(t\alpha = x_i, h\alpha = x_j \). Let \(p_{i,j} = \dim[x_i, x_j] \) be the number of paths \(p \) in \(Q \) such that \(tp = x_i, hp = x_j \).

The relations between the \(\alpha(x_j) \) and \(\sigma(x_i) \) are as follows:

\[
\begin{align*}
\sigma(x_j) &= \alpha(x_j) - \sum_{i<j} b_{i,j}\alpha(x_i), \\
\alpha(x_j) &= \sigma(x_j) + \sum_{i<j} p_{i,j}\sigma(x_i).
\end{align*}
\]

We define the \(m \)-arrow quiver \(\Theta_m \) as a quiver with two vertices \(x_+ \) and \(x_- \), and \(m \) arrows \(a_1, \ldots, a_m \) with \(ta_i = x_-, ha_i = x_+ \) for \(i = 1, \ldots, m \). We define the weight \(\tau \) given by \(\tau(x_+) = 1, \tau(x_-) = -1 \). The dimension vector \(\theta(n) \) is defined by \(\theta(n)(x_+) = \theta(n)(x_-) = n \).

The idea of the proof of Theorem 1 is to reduce the calculation to the weight space \(\text{SI}(\Theta_m, \theta(n)) \). The method comes from Classical Invariant Theory with a slight adjustment to accommodate the definition of semi-invariants \(c \).

Proof of Theorem 1 Let us fix \(Q, \beta \) and a weight \(\sigma \). We proceed in three steps. In the first step, we reduce the theorem to the case that \(Q \) is a quiver with exactly one source \(x_- \) and one sink \(x_+ \), and \(\sigma(x_-) = 1, \sigma(x_+) = -1 \) and \(\sigma \) is zero on all other vertices. In the second step we reduce to the case that there are no vertices \(x \) with \(\sigma(x) = 0 \). The only case left is the quiver \(\Theta_m \) with weight \(\tau \). In Step 3 we will prove the theorem in this case.

Step 1. Construct a quiver \(Q(\sigma) \) as follows:

\[
\begin{align*}
Q(\sigma)_0 &= Q_0 \cup x_- \cup x_+, \\
Q(\sigma)_1 &= Q_1 \cup Q_- \cup Q_+
\end{align*}
\]

where \(Q_- \) consists of the set of arrows from \(x_- \) to \(x_i \), with \(\sigma(x_i) \) arrows going to the vertex \(x_i \) for which \(\sigma(x_i) > 0 \) and no arrows going to other vertices. The set \(Q_+ \) consists of the set of arrows from \(x_i \) to \(x_+ \), with \(-\sigma(x_i) \) arrows going from the vertex \(x_i \) for which \(\sigma(x_i) < 0 \) and no arrows going from other vertices to \(x_+ \).

Example 2. Let \(Q \) be the quiver

\[
\begin{array}{c}
x_1 \\
\downarrow \\
x_3 \\
\downarrow \\
x_2
\end{array}
\]

Let \(\sigma = (1, 1, -2) \). Then the quiver \(Q(\sigma) \) is

\[
\begin{array}{c}
x_1 \\
\downarrow \\
x_- \\
\downarrow \\
x_2 \\
\downarrow \\
x_3 \\
\Rightarrow \\
x_+ \\
\Rightarrow \\
x_3
\end{array}
\]
We will write $\overline{Q} = Q(\sigma)$. Define the weight $\overline{\sigma}$ of \overline{Q} by $\overline{\sigma}(x_-) = 1$, $\overline{\sigma}(x_i) = 0$, $\overline{\sigma}(x_+) = -1$. The dimension vector $\overline{\beta} = \beta(\sigma)$ is defined by $\overline{\beta}(x_i) = \beta(x_i)$, $\overline{\beta}(x_-) = \sum_{\{i \mid \sigma(x_i) < 0\}} \sigma(x_i) \beta(x_i)$, $\overline{\beta}(x_+) = \sum_{\{i \mid \sigma(x_i) > 0\}} -\sigma(x_i) \beta(x_i)$. Suppose that $W \in \text{Rep}(\overline{Q}, \overline{\beta})$. The matrices of all maps $W(a)$ with $a \in Q_-$ form a square matrix. Let $D^-(W)$ be the determinant of this block matrix. Let $D^+(W)$ be the determinant of all $W(a)$ with $a \in Q_+$. Then the correspondence $c \to D^- cD^+$ gives the isomorphism of weight spaces $\text{SI}(Q, \beta) \to \text{SI}(\overline{Q}, \overline{\beta})$.

Let $\overline{\sigma}$ be the dimension vector of \overline{Q} such that $\overline{\sigma} = (\overline{\alpha}, \cdot)$. Let $\overline{\nabla}$ be a representation of \overline{Q} with dimension vector $\overline{\sigma}$ and let $c^{\overline{\nabla}}$ be the corresponding non-zero semi-invariant on $\text{SI}(\overline{Q}, \overline{\beta})$.

Proposition 2. The factor c in the decomposition $c^{\overline{\nabla}} = D^- cD^+$ is of the form c^V for some $V \in \text{Rep}(Q, \alpha)$.

Proof. Notice that the weight of D^- is equal to $\langle \gamma_-, \cdot \rangle$ where
$$\gamma_-(x_-) = 1, \quad \gamma_-(x_i) = \gamma_-(x_+) = 0.$$
Similarly, by (5), the weight of D^+ equals $\langle \gamma_+, \cdot \rangle$ where
$$\gamma_+(x_-) = 0, \quad \gamma_+(x_i) = -\sum_{i \leq j} p_{i,j} \sigma(x_i),$$
$$\gamma_+(x_+) = -1 + \sum_{\sigma(x_i) < 0} \sum_{i \leq j} p_{i,j} \sigma(x_i) \sigma(x_j).$$
It is easy to see that $\langle \gamma_-, \overline{\beta} \rangle = \langle \gamma_+, \overline{\beta} \rangle = 0$.

Let $\overline{\nabla} \in \text{Rep}(\overline{Q}, \overline{\sigma})$. Then $\overline{\nabla}$ has an obvious submodule $\overline{\nabla}_1 = \overline{\nabla} / \sigma_{x_0}(-x_-)$. We have an exact sequence
$$0 \to \overline{\nabla}_1 \to \overline{\nabla} \to \overline{\nabla}_2 \to 0$$
with the dimension of $\overline{\nabla}_2$ equal to γ_-. Let M be the module defined by the exact sequence
$$0 \to P_{x_+} \xrightarrow{i} \bigoplus_{b, h = x_+} P_{tb} \to M \to 0,$$
where the morphism i from P_{x_+} to a copy P_{tb} maps the trivial path $e(x_+)$ to the path b. The dimension vector of M is γ_+, and c^M is the determinant D^+. Consider the map
$$\sum_{b, h = x_+} \nabla_1(b) : \bigoplus_{b, h = x_+} \nabla_1(tb) \to \nabla_1(x_+).$$
The dimension of the kernel is at least 1. Let $(s_b)_{b, h = x_+}$ with $s_b \in \nabla_1(tb)$ be a non-trivial element in the kernel. We can now define a map $\bigoplus_{b, h = x_+} P_{tb} \to \nabla_1$ by sending the generator $c(tb) \in P_{tb}(tb)$ to s_b for all b. Because $(s_b)_{b, h = x_+}$ lies in the kernel, this actually defines a morphism $M \to \nabla_1$. Let $\overline{\nabla}_3$ be the image of this morphism.

Now $\overline{\nabla}_3$ is a submodule of ∇_1 and $c^{\overline{\nabla}_3} \neq 0$. By Lemma 1a) we have $d(\overline{\nabla}_3, \overline{\beta}) \geq 0$. We also have $c^M = D^+ \neq 0$. If we apply Lemma 1a) to the kernel N of
$M \to \overline{V}_3$, then we get $(d(N), \overline{\beta}) = (\gamma^+, -d(\overline{V}_3)) = -d(\overline{V}_3, \overline{\beta}) \geq 0$. We conclude that $d(\overline{V}_3, \overline{\beta}) = 0$. By Lemma 1 b) $c_{\overline{V}_3}$ divides the semi-invariant $c_M = D^+$. Because D^+ is an irreducible semi-invariant we must have $c_{\overline{V}_3} = D^+$, $\gamma^+ = \dim \overline{V}_3$ and \overline{V}_3 is isomorphic to M.

We have an exact sequence

$$0 \to \overline{V}_3 \to \overline{V}_1 \to \overline{V}_4 \to 0.$$

Now it is clear by the multiplicative property that $c_{\overline{V}} = c_{\overline{V}_2} c_{\overline{V}_3} c_{\overline{V}_4}$ with the first factor being proportional to D^- and the last one to D^+. Let us also define a submodule $\overline{V}_5 = \overline{V}_4 \mid_{\{x_1\}}$, so we have an exact sequence

$$0 \to \overline{V}_5 \to \overline{V}_4 \to \overline{V}_6 \to 0.$$

Note that \overline{V}_6 has support within Q. The restriction of \overline{V}_6 to \overline{Q} will be denoted by V. We will prove that the restriction of c_V to Rep($Q, \overline{\beta}$) is c_V.

Extend $W \in \text{Rep}(Q, \overline{\beta})$ to the module \overline{W} of dimension $\overline{\beta}$ by putting $\overline{W}(x-) = \sum_{a, t a = x} W(ha)$, $\overline{W}(x+) = \sum_{b, b b = x} W(tb)$, with the maps $\overline{W}(a)$ and $\overline{W}(b)$ being the components of the identity map. Define the canonical submodule $\overline{W}_1 = \overline{W} \mid_{\{x_1\}}$. We have an exact sequence

$$0 \to \overline{W}_1 \to \overline{W} \to \overline{W}_2 \to 0.$$

Define the submodule $\overline{W}_3 = \overline{W}_2 \mid_{\overline{Q} \setminus \{x_1\}}$ of \overline{W}_2. Now we have an exact sequence

$$0 \to \overline{W}_3 \to \overline{W}_2 \to \overline{W}_4 \to 0.$$

The representation \overline{W}_3 has support within Q and its restriction to \overline{Q} is just W.

We now have

$$c_{\overline{V}}(\overline{W}) = c_{\overline{V}_2}(\overline{W}) c_{\overline{V}_3}(\overline{W}) c_{\overline{V}_4}(\overline{W}) = c_{\overline{V}_3}(\overline{W})$$

because $c_{\overline{V}_3}(\overline{W}_1)$ and $c_{\overline{V}_4}(\overline{W})$ are constant. Moreover,

$$c_{\overline{V}_3}(\overline{W}_3) = c_{\overline{V}_3}(\overline{W}_3) c_{\overline{V}_3}(\overline{W}_3) = c_{\overline{V}_3}(\overline{W}_3) = c_V(W)$$

because $c_{\overline{V}_3}(\overline{W}_4)$ is constant. This concludes the proof of the proposition.

Step 2. Let $Q, \overline{\beta}, \overline{\sigma}$ be as above. Let $x \in Q_0$ be a vertex such that $\overline{\sigma}(x) = 0$. Let a_1, \ldots, a_s be the arrows in Q_1 with $h a_k = x$ ($k = 1, \ldots, s$) and let b_1, \ldots, b_t be the arrows in Q_1 with $t b_l = x$ ($l = 1, \ldots, t$). Let \overline{Q} be the quiver such that $\overline{Q}_0 = Q_0 \setminus \{x\}$ and $\overline{Q}_1 = (Q_1 \setminus \{a_1, \ldots, a_s, b_1, \ldots, b_t\}) \cup \{b_{a k, l} \} \mid_{1 \leq k \leq s, 1 \leq l \leq t}$, where $t(b_{a k, l}) = t a_k, h(b_{a k, l}) = b_l$. Let $\overline{\beta}, \overline{\sigma}$ be the restrictions of $\overline{\beta}, \overline{\sigma}$ to $Q_0 \setminus \{x\}$.

The Fundamental Theorem of Invariant Theory (see [2] for a characteristic free version) says that every semi-invariant from $\text{SI}(Q, \overline{\beta})_{\overline{\sigma}}$ can be obtained from the semi-invariants from $\text{SI}(\overline{Q}, \overline{\beta})_{\overline{\sigma}}$ by substituting the actual compositions $b a_k$ for the arrows of type $b a_k$. Assuming Theorem 1 for $\text{SI}(\overline{Q}, \overline{\beta})_{\overline{\sigma}}$ to be true, we need to show that every semi-invariant $c_{\overline{V}}$ from $\text{SI}(\overline{Q}, \overline{\beta})_{\overline{\sigma}}$ pulls back to a semi-invariant of type $c_{\overline{V}}$. For a given representation \overline{V} of \overline{Q} of dimension $\overline{\sigma}$ we define the representation $V = \text{ind} \overline{V}$ as follows. We notice that the condition $\sigma(x) = 0$ means that we expect $\dim V(x) = \sum_{k=1}^s \dim V(ta_k)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
This means we put
\[V(y) = \begin{cases} V(y) & \text{if } y \neq x, \\ \bigoplus_{k=1}^s V(ta_k) & \text{if } y = x. \end{cases} \]

We define the linear maps \(V(a) \) as follows:
\[V(a) = \begin{cases} V(a) & \text{if } a \neq a_k, b_l, \\ i(a_k) & \text{if } a = a_k, \\ \sum_{k=1}^s V(ba_{k,i}) & \text{if } b = b_i, \end{cases} \]

where \(i(a_k) : V(ta_k) \to \bigoplus_{k=1}^s V(ta_k) \) is the injection on the \(k \)-th summand.

Then it is easy to check directly from the definition of semi-invariants \(c^\nu \) that if the representation \(\overline{W} = \text{res} W \) of dimension \(\beta \) is a restriction of a representation \(W \) of \(Q \) of dimension \(\beta \), then \(c^\nu(\overline{W}) = c^\nu(W) \).

Notice that the functor \(\text{ind} \overline{V} \) is the left adjoint of the obvious restriction functor \(\text{res} : \text{Rep}(Q) \to \text{Rep}(\overline{Q}) \), i.e., we have the natural isomorphisms
\[\text{Hom}_Q(\text{ind} \overline{V}, W) = \text{Hom}_{\overline{Q}}(\overline{V}, \text{res} W) \]
which explains why \(c^\nu(\overline{W}) \) and \(c^\nu(W) \) vanish simultaneously.

Step 3. It remains to deal directly with the weight space \(\text{SI}(\Theta_m, \theta(n))_\tau \). Writing the representation \(W \) of dimension \(\theta(n) \) as an \(m \)-tuple of linear maps,
\[W(a_1), \ldots, W(a_m) : W_- \to W_+, \]
we can introduce the additional action of the group \(\text{GL}(m) \) acting on this space by taking linear combinations of the linear maps \(W(a_1), \ldots, W(a_m) \). Using the Cauchy formula (in its characteristic free version, say from [1]) we see that the space \(\text{SI}(\Theta_m, \theta(n))_\tau \) of semi-invariants can be identified with \(\bigwedge^n W_- \otimes \bigwedge^n W_+ \otimes D_n(K^m) \).

Here \(D_n \) denotes the \(n \)-th divided power. Since the divided power \(D_n(K^m) \) is generated as a \(\text{GL}(m) \)-module by its highest weight vector (which corresponds to the semi-invariant \(\det W(a_1) \)) and the set of semi-invariants of the form \(c^\nu \) is preserved by the action of \(\text{GL}(m) \), it is enough to express \(\det W(a_1) \) as the semi-invariant of the form \(c^\nu \). Notice that \(\tau = (\alpha, \cdot) \) for the dimension vector \(\alpha = (1, m-1) \). Taking the module \(V \) to be the \(m \)-tuple of linear maps \(V(a_1), \ldots, V(a_m) : K \to K^{m-1} \) where \(V(a_1) = 0 \) and \(V(a_i) \) is the embedding sending 1 to the \(i-1 \)st basis vector, for \(i = 2, \ldots, m \), we check directly that \(c^\nu = \det W(a_1) \). This concludes the proof of Theorem [1] \(\blacksquare \)

We now will give another description for semi-invariants \(\text{SI}(Q, \beta)_\sigma \). Let \(\overline{Q} = Q(\sigma), \overline{\beta} \) and \(\overline{\sigma} \) be as in Step 1 of the proof of Theorem [1]. We know that \(\text{SI}(Q, \beta)_\sigma \cong \text{SI}(\overline{Q}, \overline{\beta})_{\overline{\sigma}} \). Let \(\overline{\sigma} \) be a dimension vector of \(\overline{Q} \) such that \((\overline{\sigma}, \cdot) = \overline{\sigma} \). Now \(\text{SI}(\overline{Q}, \overline{\beta})_{\overline{\sigma}} \) is generated by semi-invariants \(c^\nu \) with \(d_V(\overline{V}) = \overline{\sigma} \). In fact we only need to take those \(c^\nu \) where \(\overline{V} \) lies in a Zariski dense set of \(\text{Rep}(\overline{Q}, \overline{\sigma}) \). A general representation \(\overline{V} \) of dimension \(\overline{\sigma} \) has the following projective resolution:
\[0 \to P_{x_+} \xrightarrow{d_V} P_{x_-} \to \overline{V} \to 0 \]
with \(d_V \in \text{Hom}_Q(P_{x_+}, P_{x_-}) = [x_-, x_+] \). So \(d_V \) can be seen as some linear combination \(\sum_{i=1}^r \lambda_ip_i \) where \(p_1, \ldots, p_r \) are all paths from \(x_+ \) to \(x_- \). For any \(\overline{W} \in \text{Rep}(\overline{Q}, \overline{\beta}) \) we have the following exact sequence:
\[0 \to \text{Hom}_{\overline{Q}}(\overline{V}, \overline{W}) \to \text{Hom}_{\overline{Q}}(P_{x_+}, \overline{W}) \xrightarrow{d_{\overline{\sigma}}} \text{Hom}_{\overline{Q}}(P_{x_-}, \overline{W}) \to \text{Ext}_{\overline{Q}}(\overline{V}, \overline{W}) \to 0. \]
It is easy to see that $\det(\tilde{d}_V) = c^V(W) = c^V(W)$.

We have that

$$\text{Hom}_Q(P_{x^+}, W) \cong W_{x^+} = \bigoplus_{\sigma(x_i) > 0} W(x_i)^{\sigma(x_i)},$$

$$\text{Hom}_Q(P_{x^-}, W) \cong W_{x^-} = \bigoplus_{\sigma(x_i) < 0} W(x_i)^{\sigma(x_i)},$$

$$\tilde{d}_V = \sum_i \lambda_i \nabla(p_i).$$

Let F be a function from the set of paths from x^+ to x^- to the set of non-negative integers. For each such F we can define the semi-invariant I_F as the coefficient of $\lambda_1^{F(p_1)} \lambda_2^{F(p_2)} \cdots \lambda_r^{F(p_r)}$ in $\det(\tilde{d}_V)$.

Corollary 3. The space of semi-invariants $SI(Q, \beta)_\sigma$ is spanned by semi-invariants of the form I_F.

A necessary condition for I_F to be non-zero is

$$\sum_i F(p_i) = \sum_{\sigma(x_i) > 0} \sigma(x_i) \beta(x_i) = \sum_{\sigma(x_i) < 0} -\sigma(x_i) \beta(x_i).$$

ACKNOWLEDGEMENT

The authors would like to thank Andrei Zelevinsky for helpful suggestions.

REFERENCES

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02151

E-mail address: hderksen@math.mit.edu

Department of Mathematics, Northeastern University, Boston, Massachusetts 02115

E-mail address: weyman@neu.edu