## Generalized group characters and complex oriented cohomology theories

HTML articles powered by AMS MathViewer

- by Michael J. Hopkins, Nicholas J. Kuhn and Douglas C. Ravenel PDF
- J. Amer. Math. Soc.
**13**(2000), 553-594 Request permission

## Abstract:

Let $BG$ be the classifying space of a finite group $G$. Given a multiplicative cohomology theory $E^{*}$, the assignment \[ G \longmapsto E^{*}(BG) \] is a functor from groups to rings, endowed with induction (transfer) maps. In this paper we investigate these functors for*complex oriented*cohomology theories $E^{*}$, using the theory of complex representations of finite groups as a model for what one would like to know. An analogue of Artin’s Theorem is proved for all complex oriented $E^*$: the abelian subgroups of $G$ serve as a detecting family for $E^*(BG)$, modulo torsion dividing the order of $G$. When $E^*$ is a complete local ring, with residue field of characteristic $p$ and associated formal group of height $n$, we construct a character ring of class functions that computes $\frac {1}{p}E^*(BG)$. The domain of the characters is $G_{n,p}$, the set of $n$–tuples of elements in $G$ each of which has order a power of $p$. A formula for induction is also found. The ideas we use are related to the Lubin–Tate theory of formal groups. The construction applies to many cohomology theories of current interest: completed versions of elliptic cohomology, $E_n^*$–theory, etc. The $n$th Morava K–theory Euler characteristic for $BG$ is computed to be the number of $G$–orbits in $G_{n,p}$. For various groups $G$, including all symmetric groups, we prove that $K(n)^*(BG)$ is concentrated in even degrees. Our results about $E^*(BG)$ extend to theorems about $E^*(EG\times _G X)$, where $X$ is a finite $G$–CW complex.

## References

- J. F. Adams,
*Stable homotopy and generalised homology*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR**0402720** - John Frank Adams,
*Infinite loop spaces*, Annals of Mathematics Studies, No. 90, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978. MR**505692** - J. F. Adams,
*Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture*, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 483–532. MR**764596**, DOI 10.1007/BFb0075584 - Shôrô Araki,
*Equivariant stable homotopy theory and idempotents of Burnside rings*, Publ. Res. Inst. Math. Sci.**18**(1982), no. 3, 1193–1212. MR**688954**, DOI 10.2977/prims/1195183305 - M. F. Atiyah,
*Characters and cohomology of finite groups*, Inst. Hautes Études Sci. Publ. Math.**9**(1961), 23–64. MR**148722** - M. F. Atiyah,
*$K$-theory*, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR**0224083** - Michael Atiyah and Graeme Segal,
*On equivariant Euler characteristics*, J. Geom. Phys.**6**(1989), no. 4, 671–677. MR**1076708**, DOI 10.1016/0393-0440(89)90032-6 - Andrew Baker and Urs Würgler,
*Liftings of formal groups and the Artinian completion of $v_n^{-1}\textrm {BP}$*, Math. Proc. Cambridge Philos. Soc.**106**(1989), no. 3, 511–530. MR**1010375**, DOI 10.1017/S0305004100068249 - Andrew Baker,
*Hecke algebras acting on elliptic cohomology*, Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997) Contemp. Math., vol. 220, Amer. Math. Soc., Providence, RI, 1998, pp. 17–26. MR**1642886**, DOI 10.1090/conm/220/03091 - Raoul Bott and Clifford Taubes,
*On the rigidity theorems of Witten*, J. Amer. Math. Soc.**2**(1989), no. 1, 137–186. MR**954493**, DOI 10.1090/S0894-0347-1989-0954493-5 - Tammo tom Dieck,
*Kobordismentheorie klassifizierender Räume und Transformationsgruppen*, Math. Z.**126**(1972), 31–39 (German). MR**298695**, DOI 10.1007/BF01580352 - Tammo tom Dieck,
*Transformation groups and representation theory*, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR**551743** - Tammo tom Dieck,
*Transformation groups*, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR**889050**, DOI 10.1515/9783110858372.312 - Michiel Hazewinkel,
*Formal groups and applications*, Pure and Applied Mathematics, vol. 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**506881** - Michael J. Hopkins,
*Characters and elliptic cohomology*, Advances in homotopy theory (Cortona, 1988) London Math. Soc. Lecture Note Ser., vol. 139, Cambridge Univ. Press, Cambridge, 1989, pp. 87–104. MR**1055870**, DOI 10.1017/CBO9780511662614.010 - Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel,
*Morava $K$-theories of classifying spaces and generalized characters for finite groups*, Algebraic topology (San Feliu de Guíxols, 1990) Lecture Notes in Math., vol. 1509, Springer, Berlin, 1992, pp. 186–209. MR**1185970**, DOI 10.1007/BFb0087510 - John Hunton,
*The Morava $K$-theories of wreath products*, Math. Proc. Cambridge Philos. Soc.**107**(1990), no. 2, 309–318. MR**1027783**, DOI 10.1017/S0305004100068572 - N. M. Osadčiĭ,
*The algebras $L^{2}_{n}(\Gamma )$, and the lattice of closed ideals of these algebras*, Ukrain. Mat. Ž.**26**(1974), 669–670, 717 (Russian). MR**0365154** - Igor Kriz,
*Morava $K$-theory of classifying spaces: some calculations*, Topology**36**(1997), no. 6, 1247–1273. MR**1452850**, DOI 10.1016/S0040-9383(96)00049-3
[KL98]krizlee I. Kriz and K. P. Lee. Odd degree elements in the Morava $K(n)$ cohomology of finite groups. Preprint, 1998. To appear in - Nicholas J. Kuhn,
*The Morava $K$-theories of some classifying spaces*, Trans. Amer. Math. Soc.**304**(1987), no. 1, 193–205. MR**906812**, DOI 10.1090/S0002-9947-1987-0906812-8 - Nicholas J. Kuhn,
*Character rings in algebraic topology*, Advances in homotopy theory (Cortona, 1988) London Math. Soc. Lecture Note Ser., vol. 139, Cambridge Univ. Press, Cambridge, 1989, pp. 111–126. MR**1055872**, DOI 10.1017/CBO9780511662614.012 - Erkki Laitinen,
*On the Burnside ring and stable cohomotopy of a finite group*, Math. Scand.**44**(1979), no. 1, 37–72. MR**544579**, DOI 10.7146/math.scand.a-11795 - Peter S. Landweber,
*Complex bordism of classifying spaces*, Proc. Amer. Math. Soc.**27**(1971), 175–179. MR**268885**, DOI 10.1090/S0002-9939-1971-0268885-1 - Peter S. Landweber, Douglas C. Ravenel, and Robert E. Stong,
*Periodic cohomology theories defined by elliptic curves*, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 317–337. MR**1320998**, DOI 10.1090/conm/181/02040 - Serge Lang,
*Cyclotomic fields*, Graduate Texts in Mathematics, Vol. 59, Springer-Verlag, New York-Heidelberg, 1978. MR**0485768** - L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure,
*Equivariant stable homotopy theory*, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR**866482**, DOI 10.1007/BFb0075778 - Jonathan Lubin and John Tate,
*Formal complex multiplication in local fields*, Ann. of Math. (2)**81**(1965), 380–387. MR**172878**, DOI 10.2307/1970622 - Jack Morava,
*Completions of complex cobordism*, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 349–361. MR**513583** - P. S. Landweber (ed.),
*Elliptic curves and modular forms in algebraic topology*, Lecture Notes in Mathematics, vol. 1326, Springer-Verlag, Berlin, 1988. MR**970278**, DOI 10.1007/BFb0078035 - Daniel Quillen,
*The spectrum of an equivariant cohomology ring. I, II*, Ann. of Math. (2)**94**(1971), 549–572; ibid. (2) 94 (1971), 573–602. MR**298694**, DOI 10.2307/1970770 - Douglas C. Ravenel,
*Morava $K$-theories and finite groups*, Symposium on Algebraic Topology in honor of José Adem (Oaxtepec, 1981), Contemp. Math., vol. 12, Amer. Math. Soc., Providence, R.I., 1982, pp. 289–292. MR**676336** - Douglas C. Ravenel,
*Complex cobordism and stable homotopy groups of spheres*, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR**860042** - Douglas C. Ravenel and W. Stephen Wilson,
*The Morava $K$-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture*, Amer. J. Math.**102**(1980), no. 4, 691–748. MR**584466**, DOI 10.2307/2374093 - Graeme Segal,
*Classifying spaces and spectral sequences*, Inst. Hautes Études Sci. Publ. Math.**34**(1968), 105–112. MR**232393** - Graeme Segal,
*Equivariant $K$-theory*, Inst. Hautes Études Sci. Publ. Math.**34**(1968), 129–151. MR**234452** - G. B. Segal,
*Equivariant stable homotopy theory*, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 59–63. MR**0423340** - Jean-Pierre Serre,
*Représentations linéaires des groupes finis*, Hermann, Paris, 1967 (French). MR**0232867** - C. T. Stretch,
*Stable cohomotopy and cobordism of abelian groups*, Math. Proc. Cambridge Philos. Soc.**90**(1981), no. 2, 273–278. MR**620737**, DOI 10.1017/S0305004100058734 - Lawrence M. Graves,
*The Weierstrass condition for multiple integral variation problems*, Duke Math. J.**5**(1939), 656–660. MR**99** - Michimasa Tanabe,
*On Morava $K$-theories of Chevalley groups*, Amer. J. Math.**117**(1995), no. 1, 263–278. MR**1314467**, DOI 10.2307/2375045 - John W. Green,
*Harmonic functions in domains with multiple boundary points*, Amer. J. Math.**61**(1939), 609–632. MR**90**, DOI 10.2307/2371316 - M. Tezuka and N. Yagita,
*Cohomology of finite groups and Brown-Peterson cohomology*, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 396–408. MR**1000392**, DOI 10.1007/BFb0085243 - Urs Würgler,
*Commutative ring-spectra of characteristic $2$*, Comment. Math. Helv.**61**(1986), no. 1, 33–45. MR**847518**, DOI 10.1007/BF02621900

*Topology and its applications*.

## Additional Information

**Michael J. Hopkins**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: mjh@math.mit.edu
**Nicholas J. Kuhn**- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
- Email: njk4x@virginia.edu
**Douglas C. Ravenel**- Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627
- Email: drav@math.rochester.edu
- Received by editor(s): July 20, 1999
- Received by editor(s) in revised form: January 28, 2000
- Published electronically: April 26, 2000
- Additional Notes: All three authors were partially supported by the National Science Foundation.
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**13**(2000), 553-594 - MSC (2000): Primary 55N22; Secondary 55N34, 55N91, 55R35, 57R85
- DOI: https://doi.org/10.1090/S0894-0347-00-00332-5
- MathSciNet review: 1758754