Generalized group characters and complex oriented cohomology theories
HTML articles powered by AMS MathViewer
- by Michael J. Hopkins, Nicholas J. Kuhn and Douglas C. Ravenel;
- J. Amer. Math. Soc. 13 (2000), 553-594
- DOI: https://doi.org/10.1090/S0894-0347-00-00332-5
- Published electronically: April 26, 2000
- PDF | Request permission
Abstract:
Let $BG$ be the classifying space of a finite group $G$. Given a multiplicative cohomology theory $E^{*}$, the assignment \[ G \longmapsto E^{*}(BG) \] is a functor from groups to rings, endowed with induction (transfer) maps. In this paper we investigate these functors for complex oriented cohomology theories $E^{*}$, using the theory of complex representations of finite groups as a model for what one would like to know. An analogue of Artin’s Theorem is proved for all complex oriented $E^*$: the abelian subgroups of $G$ serve as a detecting family for $E^*(BG)$, modulo torsion dividing the order of $G$. When $E^*$ is a complete local ring, with residue field of characteristic $p$ and associated formal group of height $n$, we construct a character ring of class functions that computes $\frac {1}{p}E^*(BG)$. The domain of the characters is $G_{n,p}$, the set of $n$–tuples of elements in $G$ each of which has order a power of $p$. A formula for induction is also found. The ideas we use are related to the Lubin–Tate theory of formal groups. The construction applies to many cohomology theories of current interest: completed versions of elliptic cohomology, $E_n^*$–theory, etc. The $n$th Morava K–theory Euler characteristic for $BG$ is computed to be the number of $G$–orbits in $G_{n,p}$. For various groups $G$, including all symmetric groups, we prove that $K(n)^*(BG)$ is concentrated in even degrees. Our results about $E^*(BG)$ extend to theorems about $E^*(EG\times _G X)$, where $X$ is a finite $G$–CW complex.References
- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR 402720
- John Frank Adams, Infinite loop spaces, Annals of Mathematics Studies, No. 90, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1978. MR 505692
- J. F. Adams, Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 483–532. MR 764596, DOI 10.1007/BFb0075584
- Shôrô Araki, Equivariant stable homotopy theory and idempotents of Burnside rings, Publ. Res. Inst. Math. Sci. 18 (1982), no. 3, 1193–1212. MR 688954, DOI 10.2977/prims/1195183305
- M. F. Atiyah, Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 23–64. MR 148722
- M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR 224083
- Michael Atiyah and Graeme Segal, On equivariant Euler characteristics, J. Geom. Phys. 6 (1989), no. 4, 671–677. MR 1076708, DOI 10.1016/0393-0440(89)90032-6
- Andrew Baker and Urs Würgler, Liftings of formal groups and the Artinian completion of $v_n^{-1}\textrm {BP}$, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 3, 511–530. MR 1010375, DOI 10.1017/S0305004100068249
- Andrew Baker, Hecke algebras acting on elliptic cohomology, Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997) Contemp. Math., vol. 220, Amer. Math. Soc., Providence, RI, 1998, pp. 17–26. MR 1642886, DOI 10.1090/conm/220/03091
- Raoul Bott and Clifford Taubes, On the rigidity theorems of Witten, J. Amer. Math. Soc. 2 (1989), no. 1, 137–186. MR 954493, DOI 10.1090/S0894-0347-1989-0954493-5
- Tammo tom Dieck, Kobordismentheorie klassifizierender Räume und Transformationsgruppen, Math. Z. 126 (1972), 31–39 (German). MR 298695, DOI 10.1007/BF01580352
- Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743
- Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR 889050, DOI 10.1515/9783110858372.312
- Michiel Hazewinkel, Formal groups and applications, Pure and Applied Mathematics, vol. 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506881
- Michael J. Hopkins, Characters and elliptic cohomology, Advances in homotopy theory (Cortona, 1988) London Math. Soc. Lecture Note Ser., vol. 139, Cambridge Univ. Press, Cambridge, 1989, pp. 87–104. MR 1055870, DOI 10.1017/CBO9780511662614.010
- Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel, Morava $K$-theories of classifying spaces and generalized characters for finite groups, Algebraic topology (San Feliu de Guíxols, 1990) Lecture Notes in Math., vol. 1509, Springer, Berlin, 1992, pp. 186–209. MR 1185970, DOI 10.1007/BFb0087510
- John Hunton, The Morava $K$-theories of wreath products, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 309–318. MR 1027783, DOI 10.1017/S0305004100068572
- N. M. Osadčiĭ, The algebras $L^{2}_{n}(\Gamma )$, and the lattice of closed ideals of these algebras, Ukrain. Mat. Ž. 26 (1974), 669–670, 717 (Russian). MR 365154
- Igor Kriz, Morava $K$-theory of classifying spaces: some calculations, Topology 36 (1997), no. 6, 1247–1273. MR 1452850, DOI 10.1016/S0040-9383(96)00049-3 [KL98]krizlee I. Kriz and K. P. Lee. Odd degree elements in the Morava $K(n)$ cohomology of finite groups. Preprint, 1998. To appear in Topology and its applications.
- Nicholas J. Kuhn, The Morava $K$-theories of some classifying spaces, Trans. Amer. Math. Soc. 304 (1987), no. 1, 193–205. MR 906812, DOI 10.1090/S0002-9947-1987-0906812-8
- Nicholas J. Kuhn, Character rings in algebraic topology, Advances in homotopy theory (Cortona, 1988) London Math. Soc. Lecture Note Ser., vol. 139, Cambridge Univ. Press, Cambridge, 1989, pp. 111–126. MR 1055872, DOI 10.1017/CBO9780511662614.012
- Erkki Laitinen, On the Burnside ring and stable cohomotopy of a finite group, Math. Scand. 44 (1979), no. 1, 37–72. MR 544579, DOI 10.7146/math.scand.a-11795
- Peter S. Landweber, Complex bordism of classifying spaces, Proc. Amer. Math. Soc. 27 (1971), 175–179. MR 268885, DOI 10.1090/S0002-9939-1971-0268885-1
- Peter S. Landweber, Douglas C. Ravenel, and Robert E. Stong, Periodic cohomology theories defined by elliptic curves, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 317–337. MR 1320998, DOI 10.1090/conm/181/02040
- Serge Lang, Cyclotomic fields, Graduate Texts in Mathematics, Vol. 59, Springer-Verlag, New York-Heidelberg, 1978. MR 485768
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- Jonathan Lubin and John Tate, Formal complex multiplication in local fields, Ann. of Math. (2) 81 (1965), 380–387. MR 172878, DOI 10.2307/1970622
- Jack Morava, Completions of complex cobordism, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin-New York, 1978, pp. 349–361. MR 513583
- P. S. Landweber (ed.), Elliptic curves and modular forms in algebraic topology, Lecture Notes in Mathematics, vol. 1326, Springer-Verlag, Berlin, 1988. MR 970278, DOI 10.1007/BFb0078035
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- Douglas C. Ravenel, Morava $K$-theories and finite groups, Symposium on Algebraic Topology in honor of José Adem (Oaxtepec, 1981) Contemp. Math., vol. 12, Amer. Math. Soc., Providence, RI, 1982, pp. 289–292. MR 676336
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- Douglas C. Ravenel and W. Stephen Wilson, The Morava $K$-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture, Amer. J. Math. 102 (1980), no. 4, 691–748. MR 584466, DOI 10.2307/2374093
- Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. MR 232393
- Graeme Segal, Equivariant $K$-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129–151. MR 234452
- G. B. Segal, Equivariant stable homotopy theory, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars Éditeur, Paris, 1971, pp. 59–63. MR 423340
- Jean-Pierre Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967 (French). MR 232867
- C. T. Stretch, Stable cohomotopy and cobordism of abelian groups, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 2, 273–278. MR 620737, DOI 10.1017/S0305004100058734
- Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
- Michimasa Tanabe, On Morava $K$-theories of Chevalley groups, Amer. J. Math. 117 (1995), no. 1, 263–278. MR 1314467, DOI 10.2307/2375045
- John W. Green, Harmonic functions in domains with multiple boundary points, Amer. J. Math. 61 (1939), 609–632. MR 90, DOI 10.2307/2371316
- M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 396–408. MR 1000392, DOI 10.1007/BFb0085243
- Urs Würgler, Commutative ring-spectra of characteristic $2$, Comment. Math. Helv. 61 (1986), no. 1, 33–45. MR 847518, DOI 10.1007/BF02621900
Bibliographic Information
- Michael J. Hopkins
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Email: mjh@math.mit.edu
- Nicholas J. Kuhn
- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
- Email: njk4x@virginia.edu
- Douglas C. Ravenel
- Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627
- Email: drav@math.rochester.edu
- Received by editor(s): July 20, 1999
- Received by editor(s) in revised form: January 28, 2000
- Published electronically: April 26, 2000
- Additional Notes: All three authors were partially supported by the National Science Foundation.
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 13 (2000), 553-594
- MSC (2000): Primary 55N22; Secondary 55N34, 55N91, 55R35, 57R85
- DOI: https://doi.org/10.1090/S0894-0347-00-00332-5
- MathSciNet review: 1758754