Criteria for $\sigma$-ampleness
HTML articles powered by AMS MathViewer
- by Dennis S. Keeler;
- J. Amer. Math. Soc. 13 (2000), 517-532
- DOI: https://doi.org/10.1090/S0894-0347-00-00334-9
- Published electronically: March 29, 2000
- PDF | Request permission
Abstract:
In the noncommutative geometry of Artin, Van den Bergh, and others, the twisted homogeneous coordinate ring is one of the basic constructions. Such a ring is defined by a $\sigma$-ample divisor, where $\sigma$ is an automorphism of a projective scheme $X$. Many open questions regarding $\sigma$-ample divisors have remained. We derive a relatively simple necessary and sufficient condition for a divisor on $X$ to be $\sigma$-ample. As a consequence, we show right and left $\sigma$-ampleness are equivalent and any associated noncommutative homogeneous coordinate ring must be noetherian and have finite, integral GK-dimension. We also characterize which automorphisms $\sigma$ yield a $\sigma$-ample divisor.References
- M. Artin and J. T. Stafford, Noncommutative graded domains with quadratic growth, Invent. Math. 122 (1995), no. 2, 231–276. MR 1358976, DOI 10.1007/BF01231444
- M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 33–85. MR 1086882
- M. Artin and M. Van den Bergh, Twisted homogeneous coordinate rings, J. Algebra 133 (1990), no. 2, 249–271. MR 1067406, DOI 10.1016/0021-8693(90)90269-T
- M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287. MR 1304753, DOI 10.1006/aima.1994.1087
- Takao Fujita, Vanishing theorems for semipositive line bundles, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 519–528. MR 726440, DOI 10.1007/BFb0099977
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. MR 282977
- Steven L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293–344. MR 206009, DOI 10.2307/1970447
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180, DOI 10.1007/978-3-662-03276-3 [KL]KL Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, revised ed., American Mathematical Society, Providence, RI, 2000.
- Miles Reid, Canonical $3$-folds, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273–310. MR 605348
- S. P. Smith and J. T. Stafford, Regularity of the four-dimensional Sklyanin algebra, Compositio Math. 83 (1992), no. 3, 259–289. MR 1175941
- D. R. Stephenson, Artin-Schelter regular algebras of global dimension three, J. Algebra 183 (1996), no. 1, 55–73. MR 1397387, DOI 10.1006/jabr.1996.0207
- Darin R. Stephenson, Algebras associated to elliptic curves, Trans. Amer. Math. Soc. 349 (1997), no. 6, 2317–2340. MR 1390046, DOI 10.1090/S0002-9947-97-01769-8 [St3]Ste —, The geometry of noncommutative graded algebras, preliminary version, 1998.
- Darin R. Stephenson and James J. Zhang, Growth of graded Noetherian rings, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1593–1605. MR 1371143, DOI 10.1090/S0002-9939-97-03752-0
- James S. Vandergraft, Spectral properties of matrices which have invariant cones, SIAM J. Appl. Math. 16 (1968), 1208–1222. MR 244284, DOI 10.1137/0116101
- Joachim Wehler, $K3$-surfaces with Picard number $2$, Arch. Math. (Basel) 50 (1988), no. 1, 73–82. MR 925498, DOI 10.1007/BF01313498
Bibliographic Information
- Dennis S. Keeler
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
- Email: dskeeler@umich.edu
- Received by editor(s): December 13, 1999
- Published electronically: March 29, 2000
- Additional Notes: The author was partially supported by NSF grant DMS-9801148.
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 13 (2000), 517-532
- MSC (2000): Primary 14A22, 14F17, 14J50, 16P90, 16S38, 16W50
- DOI: https://doi.org/10.1090/S0894-0347-00-00334-9
- MathSciNet review: 1758752