Rank one case of Dwork’s conjecture
Author:
Daqing Wan
Journal:
J. Amer. Math. Soc. 13 (2000), 853-908
MSC (2000):
Primary 11G40, 11S40; Secondary 11M41, 11G25
DOI:
https://doi.org/10.1090/S0894-0347-00-00340-4
Published electronically:
June 6, 2000
MathSciNet review:
1775761
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we prove the rank one case of Dwork’s conjecture on the $p$-adic meromorphic continuation of the pure slope L-functions arising from the slope decomposition of an overconvergent F-crystal. Further explicit information about zeros and poles of the pure slope L-functions are also obtained, including an application to the Gouvêa-Mazur type conjecture in this setting.
-
BeP. Berthelot, Cohomologie rigide et cohomologie rigide à supports propres, Prépublication 96–03, Institut de Recherche Mathématique de Rennes.
- Robert F. Coleman, $p$-adic Banach spaces and families of modular forms, Invent. Math. 127 (1997), no. 3, 417–479. MR 1431135, DOI https://doi.org/10.1007/s002220050127 CM R. Coleman and B. Mazur, The eigencurve, in Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996), London Math. Soc. Lecture Note Ser., 254, 1998, 1–113.
- B. Dwork, Normalized period matrices. I. Plane curves, Ann. of Math. (2) 94 (1971), 337–388. MR 396579, DOI https://doi.org/10.2307/1970865
- B. Dwork, Normalized period matrices. I. Plane curves, Ann. of Math. (2) 94 (1971), 337–388. MR 396579, DOI https://doi.org/10.2307/1970865
- F. Gouvêa and B. Mazur, Families of modular eigenforms, Math. Comp. 58 (1992), no. 198, 793–805. MR 1122070, DOI https://doi.org/10.1090/S0025-5718-1992-1122070-1
- F. Q. Gouvêa and B. Mazur, On the characteristic power series of the $U$ operator, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 2, 301–312 (English, with English and French summaries). MR 1220270
- Nicholas Katz, Travaux de Dwork, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 409, Springer, Berlin, 1973, pp. 167–200. Lecture Notes in Math., Vol. 317 (French, with English summary). MR 0498577
- Nicholas M. Katz, Slope filtration of $F$-crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978) Astérisque, vol. 63, Soc. Math. France, Paris, 1979, pp. 113–163. MR 563463
- Paul Monsky, Formal cohomology. III. Fixed point theorems, Ann. of Math. (2) 93 (1971), 315–343. MR 321931, DOI https://doi.org/10.2307/1970777
- Jean-Pierre Serre, Endomorphismes complètement continus des espaces de Banach $p$-adiques, Inst. Hautes Études Sci. Publ. Math. 12 (1962), 69–85 (French). MR 144186
- Da Qing Wan, Newton polygons of zeta functions and $L$ functions, Ann. of Math. (2) 137 (1993), no. 2, 249–293. MR 1207208, DOI https://doi.org/10.2307/2946539
- Da Qing Wan, Noetherian subrings of power series rings, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1681–1686. MR 1260186, DOI https://doi.org/10.1090/S0002-9939-1995-1260186-4
- Daqing Wan, Meromorphic continuation of $L$-functions of $p$-adic representations, Ann. of Math. (2) 143 (1996), no. 3, 469–498. MR 1394966, DOI https://doi.org/10.2307/2118533
- Daqing Wan, Dimension variation of classical and $p$-adic modular forms, Invent. Math. 133 (1998), no. 2, 449–463. MR 1632794, DOI https://doi.org/10.1007/s002220050251 W5D. Wan, Dwork’s conjecture on unit root zeta functions, Ann. Math., 150(1999), 867–927. W6D. Wan, Higher rank case of Dwork’s conjecture, J. Amer. Math. Soc., this issue.
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 11G40, 11S40, 11M41, 11G25
Retrieve articles in all journals with MSC (2000): 11G40, 11S40, 11M41, 11G25
Additional Information
Daqing Wan
Affiliation:
Department of Mathematics, University of California, Irvine, California 92697
MR Author ID:
195077
Email:
dwan@math.uci.edu
Keywords:
L-functions,
Fredholm determinants,
$p$-adic meromorphic continuation,
nuclear $\sigma$-modules,
Banach modules
Received by editor(s):
June 28, 1999
Received by editor(s) in revised form:
April 10, 2000
Published electronically:
June 6, 2000
Additional Notes:
This work was partially supported by the National Science Foundation
Article copyright:
© Copyright 2000
American Mathematical Society