Linear algebraic groups and countable Borel equivalence relations
Authors:
Scot Adams and Alexander S. Kechris
Journal:
J. Amer. Math. Soc. 13 (2000), 909-943
MSC (2000):
Primary 03E15; Secondary 37A20
DOI:
https://doi.org/10.1090/S0894-0347-00-00341-6
Published electronically:
June 23, 2000
MathSciNet review:
1775739
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: If $R_i$ is an equivalence relation on a standard Borel space $B_i\ (i=1,2)$, then we say that $R_1$ is Borel reducible to $R_2$ if there is a Borel function $f: B_1\to B_2$ such that $(x,y)\in R_1 \Leftrightarrow (f(x),f(y))\in R_2$. An equivalence relation $R$ on a standard Borel space $B$ is Borel if its graph is a Borel subset of $B\times B$. It is countable if each of its equivalence classes is countable. We investigate the complexity of Borel reducibility of countable Borel equivalence relations on standard Borel spaces. We show that it is at least as complex as the relation of inclusion on the collection of Borel subsets of the real line. We also show that Borel reducibility is ${\boldsymbol \Sigma }^{\boldsymbol 1}_{\boldsymbol 2}$-complete. The proofs make use of the ergodic theory of linear algebraic groups, and more particularly the superrigidity theory of R. Zimmer.
- Scot Adams, Indecomposability of treed equivalence relations, Israel J. Math. 64 (1988), no. 3, 362–380 (1989). MR 995576, DOI https://doi.org/10.1007/BF02882427
- Scott Adams, Trees and amenable equivalence relations, Ergodic Theory Dynam. Systems 10 (1990), no. 1, 1–14. MR 1053796, DOI https://doi.org/10.1017/S0143385700005368
- Pierre de la Harpe and Alain Valette, La propriété $(T)$ de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989), 158 (French, with English summary). With an appendix by M. Burger. MR 1023471
- Jean Dieudonné, Sur les groupes classiques, Hermann, Paris, 1973 (French). Troisième édition revue et corrigée; Publications de l’Institut de Mathématique de l’Université de Strasbourg, VI; Actualités Scientifiques et Industrielles, No. 1040. MR 0344355
- R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), no. 1, 193–225. MR 1149121, DOI https://doi.org/10.1090/S0002-9947-1994-1149121-0
- Edward G. Effros, Transformation groups and $C^{\ast } $-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, DOI https://doi.org/10.2307/1970381
- H. Silverman and M. Ziegler, Functions of positive real part with negative coefficients, Houston J. Math. 4 (1978), no. 2, 269–275. MR 480974
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI https://doi.org/10.1090/S0002-9947-1977-0578656-4
- Harvey Friedman and Lee Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989), no. 3, 894–914. MR 1011177, DOI https://doi.org/10.2307/2274750
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673 11S. Gao, Some applications of the Adams-Kechris technique, preprint, 2000.
- James Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124–138. MR 136681, DOI https://doi.org/10.1090/S0002-9947-1961-0136681-X
- V. V. Gorbatsevich, A. L. Onishchik, and E. B. Vinberg, Foundations of Lie theory and Lie transformation groups, Springer-Verlag, Berlin, 1997. Translated from the Russian by A. Kozlowski; Reprint of the 1993 translation [Lie groups and Lie algebras. I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993; MR1306737 (95f:22001)]. MR 1631937
- L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903–928. MR 1057041, DOI https://doi.org/10.1090/S0894-0347-1990-1057041-5 15G. Hjorth, Around nonclassifiability for countable torsion-free abelian groups, preprint, 1998.
- Greg Hjorth and Alexander S. Kechris, Borel equivalence relations and classifications of countable models, Ann. Pure Appl. Logic 82 (1996), no. 3, 221–272. MR 1423420, DOI https://doi.org/10.1016/S0168-0072%2896%2900006-1
- James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. MR 0396773 18S. Jackson, A.S. Kechris, and A. Louveau, Countable Borel equivalence relations, preprint, 2000.
- Alexander S. Kechris, The structure of Borel equivalence relations in Polish spaces, Set theory of the continuum (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 26, Springer, New York, 1992, pp. 89–102. MR 1233813, DOI https://doi.org/10.1007/978-1-4613-9754-0_7
- Alexander S. Kechris, Countable sections for locally compact group actions, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 283–295. MR 1176624, DOI https://doi.org/10.1017/S0143385700006751
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597 22A.S. Kechris, Actions of Polish groups and classification problems, preprint, 1998. 23A.S. Kechris, New directions in descriptive set theory, Bull. Symb. Logic, 5 (2), 161-174, 1999. 24A.S. Kechris, Descriptive dynamics, Descriptive Set Theory and Dynamical Systems, Ed. by M. Foreman, A.S. Kechris, A. Louveau, and B. Weiss, London Math. Society Lecture Note Series, 277, 231-258, Cambridge Univ. Press, 2000.
- Alain Louveau and Boban Veličković, A note on Borel equivalence relations, Proc. Amer. Math. Soc. 120 (1994), no. 1, 255–259. MR 1169042, DOI https://doi.org/10.1090/S0002-9939-1994-1169042-2
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825
- Calvin C. Moore, Ergodic theory and von Neumann algebras, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 179–226. MR 679505
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- Joseph J. Rotman, An introduction to the theory of groups, 4th ed., Graduate Texts in Mathematics, vol. 148, Springer-Verlag, New York, 1995. MR 1307623
- Klaus Schmidt, Algebraic ideas in ergodic theory, CBMS Regional Conference Series in Mathematics, vol. 76, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1074576
- J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French; Graduate Texts in Mathematics, No. 7. MR 0344216
- Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), no. 1, 1–28. MR 568914, DOI https://doi.org/10.1016/0003-4843%2880%2990002-9 33 S. Thomas, Notes on TFA$_2$ groups, preprint, 1998.
- V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191–220. MR 159923, DOI https://doi.org/10.1090/S0002-9947-1963-0159923-5
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417
- Robert J. Zimmer, Groups generating transversals to semisimple Lie group actions, Israel J. Math. 73 (1991), no. 2, 151–159. MR 1135209, DOI https://doi.org/10.1007/BF02772946
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 03E15, 37A20
Retrieve articles in all journals with MSC (2000): 03E15, 37A20
Additional Information
Scot Adams
Affiliation:
Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Email:
adams@math.umn.edu
Alexander S. Kechris
Affiliation:
Department of Mathematics, Caltech, Pasadena, California 91125
MR Author ID:
99660
Email:
kechris@caltech.edu
Keywords:
Borel equivalence relations,
Borel reducibility,
cocycles,
superrigidity
Received by editor(s):
March 27, 1999
Received by editor(s) in revised form:
April 21, 2000
Published electronically:
June 23, 2000
Additional Notes:
The first author’s research was partially supported by NSF Grant DMS 9703480.
The second author’s research was partially supported by NSF Grant DMS 9619880 and a Visiting Miller Research Professorship at U.C. Berkeley.
Article copyright:
© Copyright 2000
American Mathematical Society