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THE SPECTRA OF NONNEGATIVE INTEGER MATRICES
VIA FORMAL POWER SERIES

KI HANG KIM, NICHOLAS S. ORMES, AND FRED W. ROUSH

1. Introduction

An old problem in matrix theory is to determine the n-tuples of complex numbers
which can occur as the spectrum of a matrix with nonnegative entries (see [BP94,
Chapter 4] or [Min88, Chapter VII]). Authors have studied the case where the n-
tuple is comprised of real numbers [Bor95, Cia68, Fri78, Kel71, Per53, Sal72, Sou83,
Sul49], the case where the matrices under consideration are symmetric [Fie74,
JLL96], and the general problem [Joh81, LM99, LL79, Rea94, Rea96, Wuw97].
Various necessary conditions and sufficient conditions have been provided, but a
complete characterization is known for real n-tuples only for n ≤ 4 [Kel71, Sul49]
and for complex n-tuples only for n ≤ 3 [LL79].

Motivated by symbolic dynamics, Boyle and Handelman refocused attention
on the nonzero part of the spectrum by making the following “Spectral Conjec-
ture” [BH91, BH93] (see also [Boy93, §8] and [LM95, Chapter 11]).

Below, a matrix A is primitive if all entries of A are nonnegative and for some
n, all entries of An are strictly positive. Also,

tr(Λn) =
d∑
i=1

(λi)n and trn(Λ) =
∑
k|n

µ
(n
k

)
tr
(
Λk
)

where µ is the Möbius function:

µ(n) =


1 if n = 1,
(−1)e if n is the product of e distinct primes,
0 if n is divisible by k2 for some k ≥ 2.

Spectral Conjecture (Boyle, Handelman). Let Λ = (λ1, λ2, . . . , λd) be a d-tuple
of nonzero complex numbers and let S be a unital subring of R. There is a primitive
matrix over S with characteristic polynomial tm

∏d
i=1(t − λi) for some m ≥ 0 if

and only if
(1) the coefficients of the polynomial

∏d
i=1(t− λi) all belong to S,

(2) there exists λj in Λ such that λj > |λi| for all i 6= j,
(3) if S = Z, then trn(Λ) ≥ 0 for all n ≥ 1,
(3′) if S 6= Z, then for all n ≥ 1, tr(Λn) ≥ 0 and for all k ≥ 1, tr(Λn) > 0 implies

tr(Λnk) > 0.
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It is not hard to show that these conditions are necessary. Moreover, the condi-
tions can be easily verified for any example (condition (2) implies (3) or (3′) for all
but finitely many n, k).

Boyle and Handelman proved the conditions of the Spectral Conjecture to be
sufficient in many cases, including the case S = R [BH91, BH93]. In this paper we
resolve an important remaining case by proving the Spectral Conjecture for S = Z
(Theorem 2.2). The Spectral Conjecture for S = Q (Corollary 2.3) follows from this
result. Characterizations of the possible nonzero spectra of irreducible and general
nonnegative matrices follow from the primitive case [BH91].

We begin by restating the argument for the necessity of the Boyle-Handelman
conditions in the case S = Z. Suppose A is a primitive integer matrix with
det(tI − A) = tm

∏d
i=1(t − λi). Then condition (1) is clearly satisfied. Condition

(2) follows from Perron-Frobenius Theory, the spectral radius of primitive matrix
is always an eigenvalue of multiplicity one for that matrix. Condition (3) follows
when we interpret A as the adjacency matrix for a directed graph. In other words,
if A is a k × k matrix we can construct a directed graph GA with k vertices such
that the number of distinct edges from vertex i to vertex j is given by A(i,j). Here,
the trace of An, given by tr(Λn), represents the number of loops of length n in GA,
i.e., labelling each edge distinctly, tr(Λn) is the number of distinct edge sequences
e1e2 · · · en such that the terminal vertex of ei is equal to the initial vertex of ei+1

and the terminal vertex of en is the initial vertex of e1. The nth net trace of A,
given by trn(Λ), represents the number of loops of length n in GA which are not
formed by concatenating a single loop with itself.

Let Λ = (λ1, λ2, . . . , λd) satisfy the conditions of the Spectral Conjecture for
Z. We outline our construction of a matrix A over Z+ with nonzero spectrum
Λ. First, we note that there is a primitive matrix A(t) over tZ+[t] (the ring of
polynomials with nonnegative integer entries and no constant term) such that
det(I − A(t)) =

∏d
i=1(1 − λit) if and only if there is a primitive integer matrix

A with nonzero spectrum Λ (see [Boy93, §5]). In Lemma 3.1, we use this fact to
essentially reduce the problem of constructing a polynomial matrix A(t) as above
to finding polynomials q1, q2, . . . , qn ∈ tZ+[t] and a power series r ∈ tZ+[[t]] such
that

d∏
i=1

(1− λit) = (1 − r(t))
n∏
i=1

(1− qi(t)).

In particular, we show that there are integers o(n) ≥ 0, n0 ≥ 1 and a polynomial
q ∈ tZ+[t] such that for each nonzero degree term in the power series∏d

i=1(1− λit)
(1− q(t))

∏n0
n=1(1− tn)o(n)

the coefficient is nonpositive. We prove this by giving estimates of coefficients of
the power series

∏n0
n=1(1 − tn)−o(n). We use different estimates for terms with

degrees in linear, polynomial, subexponential, and exponential ranges of n0. For
sufficiently large n0, these estimates imply the nonpositivity of coefficients of the
above quotient up to a degree where the additional factor 1− q(t) takes over.

With the results here and in [BH91], a complete characterization of the spectra
of primitive matrices over R or Z would follow from sharp bounds on the size of the
realizing matrix. However, it seems that bounds of this type will be quite difficult



THE SPECTRA OF NONNEGATIVE INTEGER MATRICES 775

to pin down. In particular, it follows from an inequality in [Joh81, LL79] that given
any N one can construct a 3-tuple satisfying the Boyle-Handelman conditions for R
such that the size of a realizing matrix must be at least N×N (see [JLL96, LM98]).
This is in dramatic contrast to the symmetric case where Johnson, Laffey and Loewy
showed that if a d-tuple (λ1, λ2, . . . , λd) of real numbers is the nonzero spectrum
of a symmetric matrix, then it is the nonzero spectrum of a symmetric matrix of
size no more than d(d+ 1)/2 [JLL96].

We propose that a variant of the size bound problem may be more approachable:
Given (λ1, λ2, . . . , λd) satisfying the Boyle-Handelman conditions, produce sharp
bounds on the size of a polynomial matrix A(t) with det(I−A(t)) =

∏d
i=1(1−λit).

In some respects, bounds of this type would be more useful than bounds on ordinary
matrices since one can exhibit a much wider range of behavior with polynomial
matrices of a fixed size. Moreover, it is conceivable that this line of study could
lead to a solution to the original problem. A result of Perrin underscores the
freedom afforded by polynomial matrices: For every λ which occurs as the spectral
radius of a primitive integer matrix, there is a 2 × 2 matrix A(t) over tZ+[t] with
det(I−A(t)) = (1−λt)

∏d
i=1(1−λit) and λ > |λi| for all i [Per92] (see also [Boy93,

§5]).
Our characterization of the possible nonzero spectra of nonnegative matrices over

Z translates into a characterization of the possible zeta functions for shifts of finite
type in symbolic dynamics. In this setting, our work follows Lind’s classification of
entropies of shifts of finite type [Lin84], Boyle and Handelman’s classification of zeta
functions for finitely presented systems [BH91] and various authors’ development
of polynomial matrices as tools in symbolic dynamics [BGMY80, KRW97, MT91].
In general, there is a deep connection between symbolic dynamics and the as-
ymptotic algebra of nonnegative matrices (see [Boy93, BH93, LM95]). Boyle and
Handelman’s Generalized Spectral Conjecture (see [Boy93, §8]) concerns the matrix
relation, strong shift equivalence over R, which in the case R = Z+ corresponds to
conjugacy between associated shifts of finite type. Strong shift equivalence over a
semiring R is defined as the transitive closure of the elementary relation ∼R where
A ∼R B if there exist matrices U, V over R such that

A = UV and V U = B.

Strong shift equivalence seems to be the strongest asymptotic equivalence relation
for matrices over a given semiring [Boy93, BH93]. Boyle and Handelman conjecture
that a matrix A over a unital ring S ⊆ R is strong shift equivalent over S+ to a
primitive matrix if and only if the nonzero spectrum of A satisfies the conditions
of the Spectral Conjecture.

In Section 2 of this paper we provide statements of our results. In Section 3
we prove a reduction lemma and give a more detailed outline of the proof of the
main theorem. The proof itself is contained in Sections 4–6. We thank Mike Boyle
for many helpful discussions and for his detailed examination of portions of this
manuscript. We also thank Doug Lind for his comments and for bringing the
example from [LM95, Chapter 11] to our attention (see Appendix B).

2. Statement of the main results

For a unital ring S ⊆ R we will often refer to the conditions of the Spectral
Conjecture for S as the Boyle-Handelman conditions for S. We will also clean
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up notation a bit by noting that for a matrix A, there is an m ≥ 0 such that
det(tI−A) = tm

∏d
i=1(t− λi) if and only if det(I− At) =

∏d
i=1(1− λit).

Definition 2.1. A matrix A over R+ is primitive if there is an n > 0 such that all
of the entries of An are positive.

Main Theorem 2.2. Let Λ = (λ1, λ2, . . . , λd) be a d-tuple of nonzero complex
numbers with |λ1| ≥ |λ2| ≥ · · · ≥ |λd|. There exists a primitive integer matrix A

such that det(I−At) =
∏d
i=1(1− λit) if and only if

(1) the polynomial
∏d
i=1(1− λit) has integer coefficients,

(2) λ1 > |λi| for i = 2, 3, . . . , d,
(3) trn(Λ) ≥ 0 for all n ≥ 1.

As shown in [BH91], the Spectral Conjecture for Q follows from our main result.

Corollary 2.3. Let Λ = (λ1, λ2, . . . , λd) be a d-tuple of nonzero complex num-
bers with |λ1| ≥ |λ2| ≥ · · · ≥ |λd|. There is a primitive rational matrix A with
det(I−At) =

∏d
i=1(1− λit) if and only if

(1) the polynomial
∏d
i=1(1− λit) has rational coefficients,

(2) λ1 > |λi| for i = 2, 3, . . . , d,
(3) for all n ≥ 1, tr(Λn) ≥ 0 and

for all k ≥ 1, tr(Λn) > 0 implies tr(Λnk) > 0.

We give a sketch of how the characterization of the spectra of irreducible and
nonnegative matrices follows from the primitive case (see [BH91] for more details).

Definition 2.4. A matrix A over R+ is irreducible if for all (i, j) there is an n ≥ 0
such that the (i, j) entry of An is positive.

If a matrix A is irreducible, then there is a p ≥ 1 and a primitive matrix B such
that det(I−At) = det(I−Btp). This leads to the following.

Corollary 2.5. Let Λ = (λ1, λ2, . . . , λd) be a d-tuple of nonzero complex numbers.
There exists an irreducible matrix A over Z (Q) such that det(I−At) =

∏d
i=1(1−λit)

if and only if there exist an integer p > 0 and a partition of Λ into subtuples
{Λk : 0 ≤ k < p} such that
(1) Λk+1 = e2πi/pΛk for 0 ≤ k < (p− 1),
(2) (Λ0)p satisfies the Boyle-Handelman conditions for Z (Q).

If A is a nonnegative matrix, then there are irreducible matrices A1, A2, . . . , Am
such that det(I−At) =

∏m
j=1 det(I−Ajt).

Corollary 2.6. Let Λ = (λ1, λ2, . . . , λd) be a d-tuple of nonzero complex num-
bers. There exists a nonnegative matrix A over Z (Q) such that det(I − At) =∏d
i=1(1−λit) if and only if there exist an integer n > 0, integers p(1), p(2), . . . , p(n)

> 0 and a partition of Λ into subtuples {Λ(j,k) : 1 ≤ j ≤ n, 0 ≤ k < p(j)} such that

(1) Λ(j,k+1) = e2πi/p(j)Λ(j,k) for all 0 ≤ k < (p(j)− 1) and 1 ≤ j ≤ n,
(2) (Λ(j,0))p(j) satisfies the Boyle-Handelman conditions for Z (Q) for all 1 ≤ j ≤

n.

Remark 2.7. A characterization of zeta functions for shifts of finite type follows
from Corollary 2.6. Suppose A is a nonnegative matrix A and σA is the corre-
sponding shift of finite type. If Fix((σA)n) is the set of fixed points of the map
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(σA)n, then we have the following definition and result:

ζ(σA)(t) := exp

( ∞∑
n=1

#Fix((σA)n)
n

tn

)
=

1
det(I−At) .

Therefore, a power series in Z[[t]] is a zeta function if and only if it is equal to∏d
i=1(1 − λit)−1 where (λ1, λ2, . . . , λd) satisfies the conditions of Corollary 2.6.

Moreover, since irreducible matrices give rise to irreducible shifts of finite type
and primitive matrices give rise to mixing shifts of finite type, Theorem 2.2 and
Corollary 2.5 give finer characterizations for zeta functions associated to shifts of
finite type in those classes.

3. Proof scheme for the main theorem

For the remainder of the paper, suppose Λ = (λ1, λ2, . . . , λd) satisfies the Boyle-
Handelman conditions for Z and 1− p(t) =

∏d
i=1(1− λit). Let λ = λ1.

We begin this section by showing that the problem of creating a primitive matrix
A over Z with det(I−At) = 1− p(t) reduces to writing

1− p(t) = (1− r(t))
n∏
i=1

(1− qi(t))

where q(t) ∈ tZ+[t] and r(t) ∈ tZ+[[t]]. The reduction uses in a critical way the fact
that there is a primitive matrix A with entries in Z+ such that det(I−At) = 1−p(t)
if and only if there is a primitive polynomial matrix A(t) with entries in tZ+[t] such
that det(I−A(t)) = 1− p(t) (see [Boy93] for details).

3.1. Main reduction. Before we justify the reduction to the factorization problem
in formal power series, we prove a lemma about coefficients of large degree in a
rational power series.

Lemma 3.1. Suppose f(t) ∈ Z[t], u(t) ∈ R[t] and α > 0 such that all roots of u(t)
have modulus greater than 1/α. Let r(t) =

∑
rnt

n be the power series

r(t) =
f(t)

(1 − αt)u(t)
.

Then there exist constants K, k > 0 such that∣∣∣∣ rnαn − f(1/α)
u(1/α)

∣∣∣∣ < Ke−kn for n ≥ 0.

Proof. Let a = f(1/α)/u(1/α). Then 1/α is a root of f(t) − au(t) and b(t) =
(f(t)− au(t))/(1 − αt) is a polynomial. We may rewrite r(t) as

r(t) =
a

1− αt +
b(t)
u(t)

= a

∞∑
n=0

αntn +
b(t)
u(t)

.

Let b(t)/u(t) =
∑
cnt

n. By the condition on the roots of u(t), the radius of
convergence of the power series

∑
cnt

n is larger than 1/α. Therefore there exist
constants K, k > 0 such that |cn|α−n < Ke−kn. Since rn = aαn + cn, the result
follows.
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If, as in the previous lemma, a polynomial has a factorization of the form
(1 − αt)u(t) where the modulus of all roots of u(t) are larger than 1/α, we will
call α the Perron value of the polynomial (1−αt)u(t). If q ∈ tZ+[t] and the degrees
of terms in q(t) with nonzero coefficients have greatest common divisor one, then
1− q(t) has such a factorization.

We now show that producing a polynomial matrix A(t) over tZ+[t] with
det(I − A(t)) = 1 − p(t) reduces to producing a certain factorization of 1 − p(t)
in Z[[t]].

Main Reduction Lemma. Let p ∈ tZ[t]. If there exist polynomials q1, q2, . . . , qm
in tZ+[t] and a power series r in tZ+[[t]] such that

(1) there is a Perron value α for the polynomial
∏m
j=1(1− qj(t)),

(2) 1− p(1/α) < 0,
(3) 1− p(t) = (1− r(t))

∏m
j=1(1 − qj(t)) in Z[[t]],

then there exists a matrix A(t) with entries in tZ+[t] such that

det(I−A(t)) = 1− p(t).

Proof. Assume that the polynomials qi are numbered so that 1/α is a root of the
first polynomial 1 − q1(t). Then 1 − q1(t) factors as (1 − αt)u(t) where u(1/α) =
q′1(1/α)/α > 0. Note that for j ≥ 2 we have 1 − qj(1/α) > 0. This follows from
1 − qj(0) = 1 and assumption (1) which implies that the positive number 1/α is
strictly smaller than the unique positive root of 1− qj(t).

Since 1−p(1/α) < 0 and 1−qj(1/α) > 0 for all j ≥ 2, it follows from Lemma 3.1
that there is an N > 0 such that for all 1 ≤ k ≤ m, the nth coefficient of
(1 − p(t))

∏k
j=1(1 − qj(t))−1 is negative for all n > N . Select this N to exceed

the degree of p(t), the degree of all polynomials qj(t) and m.
Let a0(t) = p(t) and for 1 ≤ k ≤ m let 1−ak(t) be the sum of terms in the power

series (1 − p(t))
∏k
j=1(1 − qj(t))−1 up to degree 2N . Let bk(t) be the polynomial

defined by the relation

1− ak−1(t) = (1− ak(t))(1 − qk(t))− bk(t).(3.1)

Since the first 2N terms of 1 − ak−1(t) and (1 − ak(t))(1 − qk(t)) agree, all
coefficients of bk(t) in degrees 2N and less are zero. In degrees greater than 2N ,
the coefficients of bk(t) equal the coefficients of the product ak(t)qk(t). By the choice
of N , qk(t) ∈ Z+[t] has degree at most N and ak(t) has nonnegative coefficients in
degrees (N + 1) and higher. Therefore, all coefficients of bk(t) are nonnegative.

Beginning with 1 − p(t) = 1 − a0(t) and successively using equation (3.1), we
have

1− p(t) = (1− am(t))
m∏
j=1

(1 − qj(t))−
m∑
i=1

bi(t) i−1∏
j=1

(1− qj(t))

 .(3.2)

It follows from the hypotheses of the lemma that the polynomial am(t) has all
nonnegative coefficients since it is equal to the first 2N terms of the power series
r(t).
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Now let M(t) be the following polynomial matrix over Z+[t]:

M(t) =



am(t) 1 0 . . . 0

bm(t) qm(t) 1
. . .

...

bm−1(t) 0 qm−1(t)
. . . 0

...
...

. . . . . . 1
b1(t) 0 . . . 0 q1(t)


.

Using equation (3.2), we find det(I−M(t)) = 1− p(t).
Finally, we replace each occurrence of 1 in M(t) with a t and each bi(t) with

bi(t)/tm+1−i. The result is a matrix A(t) over tZ+[t] with det(I − A(t)) = 1 −
p(t).

We now turn our attention to producing a factorization of our candidate poly-
nomial 1 − p(t) as in the Main Reduction Lemma. One can recursively define a
sequence of integers o(i) such that 1− p(t) has a formal factorization as

1− p(t) =
∞∏
i=1

(1− ti)o(i).

We claim o(i) = tri(Λ)/i ≥ 0 for all i. To see this, first note the relation

1− p(t) = exp

 d∑
j=1

log(1 − λjt)

 = exp

(
−
∞∑
i=1

tr(Λi)
i

ti

)
.

Taking logarithms and comparing coefficients in the resulting power series, we see
tr(Λi) =

∑
k|i ko(k). Since tr(Λi) =

∑
k|i trk(Λ), we obtain o(i) = tri(Λ)/i.

Thus we use the Net Trace Condition to obtain an infinite factorization as above
with nonnegative exponents o(i). Moreover, we will know from the Perron condition
that, for large i, io(i)λ−i ≈ 1.

It seems natural to attempt to truncate the infinite factorization and write

1− p(t) = (1− r(t))
n0∏
i=1

(1− ti)o(i)

where r ∈ tn0+1Z+[[t]]. With such a factorization, we automatically have that
the first n0 coefficients of r(t) are zero, and coefficients in degrees n0 through 2n0

are positive. In fact we can use this truncated product approach to factor many
examples, including 1−4t+6t2−6t3 from [LM95] (see Appendix B). This example
was presented as one which satisfies the Boyle/Handelman conditions, but one for
which there was no known matrix with the corresponding nonzero spectrum.

However, we are not able to factor general polynomials as above. In particular,
to apply the Main Reduction Lemma, we need the denominator polynomial to have
a Perron value in an appropriate region to control coefficients of large degree for
the quotient power series.

The final factorization we seek will be one of the form

1− p(t) = (1− r(t))(1 − q(t))
n0∏
i=1

(1− ti)o(i)

where q(t) ∈ tZ+[t] and r(t) ∈ tn0+1Z+[[t]]. We are assuming 1− p(t) has a Perron
value λ. If we select 1− q(t) so that its Perron value α is smaller than λ but larger
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than |λi| for i > 1, then we can guarantee 1− p(1/α) < 0. Thus by Lemma 3.1, all
coefficients of large degree terms r(t) have the correct sign.

We know the nth coefficient of (1 − p(t))/(1 − q(t))
∏n0
i=1(1 − ti)o(i) has the

appropriate sign when n is small (less than 2n0) and when n is sufficiently large.
The difficulty lies in bridging the gap between these two regions. The proof we
present relies on careful estimates of the coefficients of rational power series in
various ranges. For example, we use different arguments for n ∈ (2n0+log2 n0, n

20
0 ),

n ∈ [n20
0 , e

rn0) and n ∈ [ern0 ,∞). The sequence of lemmas is somewhat long, and
we present now an overview which we hope will help the reader digest the proof.

3.2. Overview of the estimates. We wish to show that the nth coefficient of the
product of the polynomial 1−p(t) with the power series (1−q(t))−1

∏n0
i=1(1−ti)−o(i)

is nonpositive for n > 0. To do so we will follow one of two arguments.
Let c(t) =

∑∞
i=0 cnt

n be any power series with c0 = 1 and cn ≥ 0 for all
n. Suppose we would like to show that the nth coefficient of (1 − p(t))c(t) is
negative. We may write the nth coefficient of the product of (1 − p(t))c(t) as
cn(1−

∑d
i=1 picn−i/cn).

To apply the Difference Argument, we show that there is a D > 0 such that
cn−i/cn ≈ λ−i(1 + iD) for i = 1, 2, . . . , d. Then

1−
d∑
i=1

picn−i/cn ≈ 1−
d∑
i=1

piλ
−i

︸ ︷︷ ︸
0

−Dλ−1
d∑
i=1

ipiλ
−i+1

︸ ︷︷ ︸
p′(1/λ)

.

Since p′(1/λ) > 0, the expression on the right-hand side is negative. In order to
make this argument precise, we will have to show that the error in the approxima-
tion is small compared to the number D.

To apply the Ratio Argument, we show that there is a number α < λ such that
cn−i/cn ≈ α−i for i = 1, 2, . . . , d and 1− p(1/α) < 0. Then

1−
d∑
i=1

picn−i/cn ≈ 1−
d∑
i=1

piα
−i = 1− p(1/α).

To make this argument precise, we will have to show that the error in the approx-
imation is small compared to 1 − p(1/α). By the Mean Value Theorem, this will
reduce to showing that the error in the approximation is small compared to |λ−α|.

In Section 4, we examine the product of the power series

S(t) =
∞∑
n=0

Snt
n =

n0∏
i=1

(
1− ti

)−o(i)
and the polynomial 1− p(t). We apply the Difference Argument to show that the
nth coefficient of this product is negative for n ∈ (n0, n

20
0 ). To do so, we first give

bounds on Sn/Sn+1 for n in an initial range. Then we introduce a different power
series E(t), the coefficients of which approximate the coefficients of S(t). Let

E(t) =
∞∑
n=0

Ent
n = exp

(
n0∑
i=1

tr(Λi)
i

ti

)
.
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By differentiating E(t), we find that the coefficients of E(t) satisfy a recursion
relation:

nEn =
n0∑
i=1

tr(Λi)En−i.

With the estimates on ratios of Sn/Sn+1 as the base case, we use the recursion
formula to give estimates on En/En+1 for n up to some exponential function of
n0. We show that for large n0, all approximations introduce errors which are small
compared to D = λSn−1/Sn − 1 > 0 for n ∈ (n0, n

20
0 ). Then by the Difference

Argument the series (1 − p(t))S(t) has nonnegative coefficients in this polynomial
range.

In Section 5 we make further use of the recursion formula for En and apply the
Ratio Argument to the nth coefficient of S(t)(1 − p(t)) for n ∈ [n20

0 , e
rn0) (r is a

number chosen based on other constants). Here we think of the recursion relation
on the coefficients of E(t) as being given by a matrix. In other words, there is a
matrix An such that

(En, En−1, . . . , En−n0+1)T = An(En−1, En−2, . . . , En−n0)T.

Thus, beginning with an initial string of n0 consecutive coefficients, we obtain a
string of coefficients of larger degree by applying the matrix AnAn−1 · · ·An−N+1.
As we will show for n > n4

0 and N = n6
0, applying this product of matrices to a

vector v ∈ Rn0
+ is approximately the same as multiplying by the Nth power of the

single matrix An to v. The matrix An has a Perron eigenvalue αn. A fairly general
argument involving estimates of moduli of other eigenvalues of An implies that
when a large power of An is applied to v the result is a vector which is very close
to an eigenvector for An corresponding to αn. Since eigenvectors corresponding
to αn are exactly the vectors with ratios of successive entries equal to αn, we see
that En/En−1 ≈ 1/αn. Applying the Ratio Argument, all of these approximations
taken with a lower bound on λ−αn imply that the nth coefficient of S(t)(1− p(t))
is negative for n ∈ [n20

0 , e
rn0).

In Section 6, we incorporate an additional factor (1−q(t))−1 into the factorization
scheme. We first select a real number β such that β < λ and 1− p(1/β) < 0. Then
let 1− q(t) be an integer polynomial approximation of

1− 1
n3

0 − n2
0

(
βn

2
0+1tn

2
0+1 + βn

2
0+2tn

2
0+2 + · · ·+ βn

3
0tn

3
0

)
.

The Perron value for 1−q(t) is approximately β. Using the matrix arguments from
Section 5 on the recursion formula for coefficients of (1−q(t))−1, we show that ratios
of successive coefficients of (1− q(t))−1 are approximately β for n > n20

0 . Again we
can apply the Ratios Argument to show that the nth coefficient of (1−p(t))/(1−q(t))
is negative for n > n20

0 .
Finally, we combine all of the estimates to show that the nth coefficient of the

product (1− p(t))S(t)(1− q(t))−1 is nonpositive for all n > 0. We think of the nth
coefficient of (1 − p(t))S(t)(1 − q(t))−1 either as the nth coefficient of the product
of (1 − p(t))S(t) and (1 − q(t))−1 or as the nth coefficient of the product of S(t)
and (1 − p(t))(1 − q(t))−1. In either case, we will write the nth coefficient as the
sum of a large number of negative terms and a relatively small number of positive
terms. We are able to conclude that the overall sum is negative.
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4. Polynomial range

In this section we follow the Difference Argument to show that if n0 is sufficiently
large and n ∈ (n0, n

20
0 ), then the nth coefficient of the power series S(t)(1 − p(t))

is bounded above by Sn times a negative constant over n0 (Polynomial Range
Lemma). We must show that for each n ∈ (n0, n

20
0 ) there is a number D > 0 such

that Sn−i/Sn ≈ λ−i(1 + iD) for i = 1, 2, . . . , d. We will let D = λSn−1/Sn − 1.
It will be convenient for us to write many of our estimates in terms of coefficients

scaled by λ. Our convention will be to write coefficients of power series with capital
letters and scaled coefficients with lower case letters. For example, let sn = Snλ

−n.
Let Z(t) denote the candidate zeta function Z(t) =

∑∞
i=1 zn(λt)n = (1− p(t))−1.

Throughout the remainder of the paper, we will use the fact that there exist
constants a,K0, k0 > 0 such that

|zn − a| < K0e
−k0n and |no(n)λ−n − 1| < K0e

−k0n(4.1)

for all n.
In the following lemmas we use the term “constant” or “universal constant”

to mean a number which is chosen based solely on 1 − p(t). In particular, it is
important that constants do not depend upon the choice of n0. Many constants
used in the statements of lemmas will be denoted by K or k and will be numbered
so as to distinguish them.

4.1. Initial bounds. In the following two lemmas, our goal is to show that sn/sn+1

−1 is bounded between two positive constants times 1/n0 for n ∈ [n0+log2 n0, 2n0+
log2 n0]. In Section 4.2 we will use these initial bounds along with a recursive
formula to produce estimates on sn/sn+1 − 1 for larger n.

We begin by proving a uniform lower bound on the coefficients sn for n in this
initial range.

Lemma 4.1. There exists a constant K1 > 0 such that if n0 is sufficiently large,
then

sn > K1 for n ∈ (n0, 2n0 + log2 n0].

Proof. We have the following expressions for S(t):

S(t) =
n0∏
i=1

(1 − ti)−o(i) =
∞∏

i=n0+1

(1 − ti)o(i)/(1− p(t)).

Thus for n ∈ (n0, 2n0 + log2 n0], we have

sn = zn −
n∑

i=n0+1

o(i)
λi

zn−i +
∑
i,j>n0
i+j≤n

o(i)o(j)
λi+j

zn−i−j +
n/2∑

i=n0+1

λ−2i

(
o(i)
2

)
zn−2i.

(The last two summations only occur when n ≥ 2n0 + 2.) Since the last two terms
summations above are nonnegative,

sn ≥ zn −
n∑

i=n0+1

o(i)
λi

zn−i = zn

(
1−

n∑
i=n0+1

o(i)zn−i
λizn

)
.

From estimates on zn and o(n), the difference between the summation of the terms∑n
i=n0+1 o(i)zn−i/λ

izn and
∑n

i=n0+1 1/i is at most a constant times 1/n0.
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Choose n0 large enough so that
n∑

i=n0+1

1
i
< log

(
n+ 1
n0 + 1

)
≤ log

(
2n0 + log2 n0 + 1

n0 + 1

)
< log(2.1)

and
n∑

i=n0+1

o(i)zn−i
λizn

< log(2.2).

Then sn > zn(1− log(2.2)).
The result follows since we may choose n0 so that all scaled coefficients zn are

uniformly bounded away from zero for n > n0.

We are now ready to give bounds on sn/sn+1 − 1 for n in this initial range.
Recall that this quantity will represent D when we apply the Difference Argument.

Lemma 4.2. There exist constants 0 < k1 < k2 such that if n0 is sufficiently large,
then

1 +
k1

n0
<

sn
sn+1

< 1 +
k2

n0
for n ∈ [n0 + log2 n0, 2n0 + log2 n0].

Proof. We will rewrite the ratio sn/sn+1 as 1 + (sn − sn+1)/sn+1 and examine the
difference sn − sn+1.

First, assume n ∈ [n0 + log2 n0, 2n0]. Then

sn − sn+1 = zn − zn+1 −
n∑

i=n0+1

o(i)
λi

zn−i +
n+1∑

i=n0+1

o(i)
λi

zn+1−i.

Let n1 = blog2 n0c and rewrite the two summations above as the sum of the
following three terms:

−
n−n1∑
i=n0+1

o(i)
λi

(zn−i − zn+1−i)−
n∑

i=n−n1+1

(
o(i)
λi
− o(i+ 1)

λi+1

)
zn−i +

o(n− n1)
λn−n1

zn1 .

By estimating each term, we will show that the last term dominates.
In the first summation, all terms of the form o(i)λ−i are less than a universal

constant over n0. The differences between consecutive scaled coefficients |zk−zk+1|
form a summable series in k. Since the indices which occur in |zn−i − zn+1−i| are
greater than n1, by selecting n0 sufficiently large, we can make the sum as small as
we like compared to 1/n0.

In the second summation, zn−i is bounded above by a constant and the difference
|o(i)λ−i − o(i + 1)λi+1| is less than a constant over n2

0. Since there are at most
log2 n0 terms in the sum, the sum is as small as we like compared to 1/n0.

In the last term, for n0 sufficiently large, zn1 is close to a positive constant,
and o(n − n1)λn1−n is approximately 1/(n − log2 n0). We may select constants
0 < c1 < c2 such that for n ∈ [n0 + log2 n0, 2n0],

c1
n0

<
o(n− n1)
λn−n1

zn1 <
c2
n0
.



784 KI HANG KIM, NICHOLAS S. ORMES, AND FRED W. ROUSH

All other terms in sn − sn+1 have upper bounds which are small compared to
1/n0. Therefore if n0 is sufficiently large,

c1
2n0

< sn − sn+1 <
2c2
n0

.

Finally, by Lemma 4.1 we may assume that sn+1 is bounded away from zero.
Thus we may choose constants 0 < k1 < k2 such that

1 +
k1

n0
< 1 +

sn − sn+1

sn+1
< 1 +

k2

n0
.

This completes the proof in the case n ∈ [n0 + log2 n0, 2n0].
When n ∈ (2n0, 2n0 + log2 n0], we have

sn = zn −
n∑

i=n0+1

o(i)
λi

zn−i +
∑
i,j>n0
i+j≤n

o(i)o(j)
λi+j

zn−i−j +
n/2∑

i=n0+1

λ−2i

(
o(i)
2

)
zn−2i.

In the summation
∑
λ−(i+j)o(i)o(j)zn−i−j there are at most log4 n0 terms. In∑

λ−2i
(
o(i)

2

)
zn−2i, there are at most log2 n0 terms. In both, each summand is at

most a constant over n2
0. For sufficiently large n0, these terms are small compared to

our dominating term. By adjusting our constants a bit, the result still follows.

4.2. An approximation of S(t). To get further results for ratios sn/sn+1, we
work with a power series E(t) which approximates S(t) and has coefficients which
satisfy a useful recursion relation.

First notice

logS(t) = log

(
n0∏
i=1

(1− ti)−o(i)
)

= −
n0∑
i=1

o(i) log(1− ti)

=
n0∑
i=1

tr(Λi)
i

ti +
∞∑

n=n0+1

∑
i|n
i≤n0

io(i)
n

tn.

We will define E(t) as the exponential of the first of the two summations above.
As we will show, the exponential of the second summation has relatively small
coefficients.

Letting τn = λ−ntr(Λn),

E(t) =
∞∑
n=0

en(λt)n = exp

(
n0∑
i=1

τi
i

(λt)i
)
.

The recursion formula below follows from d
dtE(t) = E(t)

∑n0
i=1 τiλ

iti−1:

nen =
n0∑
i=1

τien−i for n > n0.(4.2)

Throughout the rest of the paper, we will use the fact that |τi − 1| is less than an
exponentially small function of i.

In the following lemma, we show that en approximates sn in an initial range. We
will then use the recursion formula to produce upper and lower bounds on ratios
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en/en+1. This allows us to show that en approximates sn for values of n up to some
exponential function of n0.

Lemma 4.3. There exists a constant K2 > 0 such that if n0 is sufficiently large,
then ∣∣∣∣snen − 1

∣∣∣∣ < K2λ
−n0/3 for n ∈ (n0, 2n0 + log2 n0].

Proof. Let

L(t) = logS(t)− logE(t) =
∞∑

n=n0+1

∑
i|n
i≤n0

io(i)
n

tn.

The coefficients of L(t) are all nonnegative and are zero in degrees one through n0.
For n0 sufficiently large and n < n0,

Ln =
∑
i|n
i≤n0

io(i)
n

< λn/2.

This follows since the indices i in the above summation are less than n/2 so we may
assume io(i) < 2λn/2. Thus we have at most n/2 terms in the summation all less
than 2λn/2/n.

Let E′(t) =
∑
E′nt

n = expL(t). By the above inequality, E′n is always less
than the nth coefficient of the series exp

∑∞
i=1 λ

i/2ti. This series has radius of
convergence λ−1/2. Therefore, there exists a constant C > 0 such that E′n < Cλ2n/3

for all n.
Since E(t) = S(t) exp(−L(t)), we have

en = sn

(
1 +

n∑
i=n0+1

sn−i
sn

[exp(−L(t))]i
λi

)
.

The absolute value of the ith coefficient of exp(−L(t)) is at most E′i which is
bounded above by Cλ2i/3. The ratios sn−i/sn are uniformly bounded in this region
by Lemma 4.1 and the fact that the scaled coefficients have a uniform upper bound
(the power series S(t) has radius of convergence 1 > 1/λ). Altogether this gives a
constant K2 > 0 such that |en/sn − 1| < K2λ

−n0/3 for n ∈ (n0, 2n0 + log2 n0].

The next step is to obtain upper and lower bounds on ratios of consecutive
coefficients in E(t). The key will be to use the recursion formula to consider the
ratio en/en+1 as (n+1)/n times a weighted sum of the previous n0 ratios. In other
words, we write

en
en+1

=
(
n+ 1
n

) ∑n0
i=1 τien−i

(n+ 1)en+1

=
(
n+ 1
n

) n0∑
i=1

(
τien+1−i

(n+ 1)en+1

)
en−i
en+1−i

.

For fixed n, if we let wi = τien+1−i/(n+ 1)en+1, we have
∑n0

i=1 wi = 1.
We will use Lemma 4.3 and results of Section 4.1 to establish bounds on ratios of

the form en/en+1 for n ∈ [n0 + log2 n0, 2n0 + log2 n0]. Then working by induction,
we will use the recursion formula to establish upper and lower bounds for en/en+1

for n ∈ [n0 + log2 n0, e
rn0 ] where r > 0 is some constant.
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Lemma 4.4. There exists a constant k3 > 0 such that if n0 is sufficiently large,
then

en
en+1

> 1 +
k3

n0
for n ∈ [n0 + log2 n0,∞).

Proof. Suppose n0 is large enough for all previous lemmas and assume n ∈ [n0 +
log2 n0, 2n0 + log2 n0]. By Lemma 4.2, sn/sn+1 < 1 + k1/n0. By Lemma 4.3, the
difference between en/en+1 and sn/sn+1 is small compared to 1/n0. Therefore,
there is a constant k3 > 0 such that for n0 sufficiently large, en/en+1 > 1 + k3/n0

for n in this initial range.
Now fix n > 2n0 + log2 n0 and assume en−i/en+1−i > 1 + k3/n0 for 1 ≤ i ≤ n0.

Then by the recursion formula,

en
en+1

=
(
n+ 1
n

) n0∑
i=1

wi
en−i
en+1−i

>

n0∑
i=1

wi

(
1 +

k3

n0

)
= 1 +

k3

n0
.

It is somewhat more complicated to obtain an upper bound on the ratios en/en+1

because of the factor (n+ 1)/n in front of the weighted sum. Our upper bound will
have to grow with n.

The following lemma is the first which contains the choice of the value of r. It is
important to note that in this and subsequent lemmas, r is always specified before
n0 and any smaller value of r would also work.

Lemma 4.5. For some r > 0, if n0 is sufficiently large, then

en
en+1

< 1 +
4 logn
n0

for n ∈ [n0 + log2 n0, e
rn0 ].

Proof. Select r ∈ (0, 1/12).
Reasoning in a manner similar to the previous proof, we may assume that there is

a constant k4 > 0 such that en/en+1 < 1+k4/n0 for n ∈ [n0+log2 n0, 2n0+log2 n0].
Therefore, for n0 sufficiently large, we can insure that en/en+1 is no more than
1 + 4 logn/n0 for n in this initial range.

Now assume that n ∈ (2n0 + log2 n0, e
rn0) and for 1 ≤ i ≤ n0, en−i/en+1−i <

1 + 4 log(n− i)/n0. Then by the recursion formula,

en
en+1

=
(
n+ 1
n

) n0∑
i=1

wi
en−i
en+1−i

<

(
n+ 1
n

) n0∑
i=1

wi

(
1 +

4 log(n− i)
n0

)

<

(
n+ 1
n

)(
1 +

4
n0

n0∑
i=1

wi log(n− i)
)
.

Using facts about logarithms, we may write

n0∑
i=1

wi log(n− i) < log

(
n0∑
i=1

wi(n− i)
)

= log

(
n−

n0∑
i=1

wii

)
.
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We will later show that
∑n0

i=1 wii > n0/3. Assuming this, the result is proven as
follows. First we observe

en
en+1

<

(
n+ 1
n

)(
1 +

4
n0

log
(
n− n0

3

))
=
(

1 +
1
n

)(
1 +

4 logn
n0

+
4
n0

log
(

1− n0

3n

))
.

We want to show that the above estimate is less than 1 + 4 logn/n0, which means
we want to show

1
n

+
4 logn
nn0

+
(

1 +
1
n

)
4
n0

log
(

1− n0

3n

)
< 0.

The above inequality follows since(
1 +

1
n

)
4
n0

log
(

1− n0

3n

)
< − 4

3n

and n < ern0 < en0/12 implies

4 logn
nn0

<
1

3n
.

It remains to show
∑
wii > n0/3. We first note that if n0 is sufficiently large,

the weights wi increase for i > log2 n0. This follows since we have a lower bound
on τi+1/τi of the form 1−Ce−ci for some constants C, c > 0 and a lower bound on
en−i/en+1−i > 1 + k3/n0 from Lemma 4.4.

Let n1 = blog2 n0c and let W denote the sum of the first n1 weights W =∑n1
i=1 wi. By choosing n0 sufficiently large, we can make W as small as we like.

This follows since W is the sum of n1 terms, all of which are no more than some
universal constant times the last term wn1 (recall wi = τien−i, en−i increases with
i, τi is uniformly bounded above). On the other hand, 1−W is the sum of n0−n1

terms all of which are greater than the weight wn−1.
To continue, we note

1
1−W

n0∑
i=n1+1

wii >
1

n0 − n1

n0∑
i=n1+1

i.

This follows since in the summation on the left we have a weighted sum where
increasing weights are multiplied by increasing terms, whereas the summation on
the right has an even amount of weight on each term (this idea is made precise in
Lemma A.1).

Now we have
n0∑
i=1

wii >
1−W
n0 − n1

n0∑
i=n1+1

i =
1−W
n0 − n1

(
n2

0 + n0

2
− n2

1 + n1

2

)
.

By selecting n0 sufficiently large, we can force the right-hand side to be as close as
we like to n0/2. In particular, we can force it to be at least n0/3, our desired lower
bound.

Our estimates on en now allow us to show that the en’s approximate sn for
n ∈ (2n0 + log2 n0, e

rn0).
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Lemma 4.6. There exists a constant K3 > 0 such that if n0 is sufficiently large,
then ∣∣∣∣snen − 1

∣∣∣∣ < K3λ
−n0/6 for n ∈ [n0 + log2 n0, e

rn0 ].

Proof. Assume (1 + 4r) < λ1/6 and r is small enough for Lemma 4.5.
Recall from the proof of Lemma 4.3 that the power series E′(t) was defined by

the relation S(t) = E(t)E′(t) and there is a constant C > 0 such that E′i < Cλ2i/3

for all i. We have the following:

sn = en

(
1 +

n∑
i=n0+1

en−i
en

E′i
λi

)
< en

(
1 + C

n∑
i=n0+1

en−i
en

λ−i/3

)
.(4.3)

Assume that n0 is large enough to give bounds from all previous lemmas and
assume n ∈ [n0 + log2 n0, e

rn0 ]. For estimates on the terms en−i/en, we have two
cases.

If n0 + log2 n0 ≤ n− i < n, then by Lemma 4.5,

en−i
en

<

(
1 +

4 logn
n0

)i
< (1 + 4r)i < λi/6.

Now assume n− i < n0 + log2 n0. Then either n− i ≤ n0 in which case en−i =
sn−i or n − i ∈ (n0, n0 + log2 n0] in which case Lemma 4.3 tells us that en−i is
approximately equal to sn−i. Lemma 4.1 implies that there is a constant C′ > 0
such that sk < C′sbn0+log2 n0c for all k < n0+log2 n0. Therefore, en−i/en < 2C′λi/6

for n− i < n0 + log2 n0.
Substituting our estimates in equation (4.3), we can find a constant K3 > 0 such

that ∣∣∣∣snen − 1
∣∣∣∣ < K3λ

−n0/6.

We have now established bounds on ratios en/en+1 and shown that we introduce
a small error by replacing sn/sn+1 with en/en+1. We are ready to prove the main
lemma of this section. Define

R(t) =
∞∑
n=0

Rnt
n = (1 − p(t))S(t).

Polynomial Range Lemma. There exists a constant K4 > 0 such that if n0 is
sufficiently large, then

Rn < −K4Sn/n0 for n ∈ (n0, n
20
0 ).

Proof. First assume that n ∈ (n0, 2n0 + 2 log2 n0]. From the equation

R(t) =
∞∏

i=n0+1

(1− ti)o(i)

we have

Rn = −o(n) +
∑
i+j=n
i,j>n0

o(i)o(j) +
(
o(n/2)

2

)
.
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(The last two terms occur only if n ≥ 2n0 + 2, the last term occurs only if n is
even.)

We use estimates similar to those in Lemma 4.1 to show this expression is nega-
tive. For sufficiently large n0, o(n) > λn/2n > λn/6n0. The second term

∑
o(i)o(j)

is the sum of no more than log2 n0 terms, each of which is less than a constant times
λn/n2

0. The final term
(
o(n/2)

2

)
is less than λn/n2

0.
It also follows from the above argument that for n0 sufficiently large, Rn is less

than a negative constant times λn/n0 in this range. Since the coefficients sn =
λ−nSn are uniformly bounded, we obtain the desired upper bound of a negative
constant times Sn/n0.

Now fix n ∈ (2n0 + 2 log2 n0, n
20
0 ). It follows from Lemma 4.6 that the absolute

value of the difference between 1−
∑d

i=1 piλ
−isn−i/sn and 1−

∑d
i=1 piλ

−ien−i/en
is less than a constant times λ−n0/6. In particular, this difference is small compared
to 1/n0 for large n0. It remains to show the expression 1 −

∑d
i=1 piλ

−ien−i/en is
less than a negative constant over n0.

Let Di denote the difference en−i/en − en+1−i/en for 1 ≤ i ≤ n0 and notice

en−i
en

= 1 +
i∑

j=1

Dj = 1 + iD1 +
i∑

j=1

(i− j)(Dj+1 −Dj)︸ ︷︷ ︸
ith error term

.

Lemma 4.4 implies D1 > k3/n0. Therefore, following the Difference Argument, it
suffices to show that the ith error term is small compared to 1/n0 for i = 1, 2, . . . , d.

We will work with the second order difference D2 − D1. An upper bound on
second order differences Dj+1 −Dj for j = 1, 2, . . . , d follows similarly. Note that
we may rewrite D2 −D1 in the following way:

D2 −D1 =
(
en−2

en
− en−1

en

)
−
(
en−1

en
− 1
)

=
(

(n− 2)en−2

nen
− (n− 1)en−1

nen

)
−
(

(n− 1)en−1

nen
− nen
nen

)
+

2
n

(
en−2

en
− en−1

en

)
.

Lemma 4.5 implies the last term above has the following upper bound:

2
n

(
en−2

en
− en−1

en

)
=

2en−1

nen

(
en−2

en−1
− 1
)

<
2
n

(
1 +

4 logn
n0

)(
4 logn
n0

)
.

Since n ∈ (n0, n
20
0 ), for sufficiently large n0 this upper bound is less than a constant

times log n0/n
2
0.
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We use the recursion formula for coefficients en to rewrite the remaining terms
as follows:

1
nen

n0∑
i=1

τi(en−2−i − en−1−i)− τi(en−1−i − en)

=
1
n

n0∑
i=1

τi(Di+2 −Di+1)

=
τn0Dn0+2

n
+

1
n

n0∑
i=2

(τi−1 − τi)Di+1 −
τ1D2

n
.

The first term τn0Dn0+2/n is the most difficult to get an upper bound on. It is
a first order difference (en−n0−2/en−n0−1 − 1) times a factor τn0en−n0−1/nen for
which we do not yet have a sufficient upper bound. To show that this factor is
small, we consider the ratio 2en−n0/nen, which is greater than τn0en−n0−1/nen for
n0 sufficiently large. Using the recursion formula,

en−n0

nen
=

en−n0∑n0
i=1 τien−i

=
1∑n0

i=1 τien−i/en−n0

.

By Lemma 4.5, we have en−i/en−n0 > (1 + 4 logn/n0)i−n0 . Therefore,
n0∑
i=1

τien−i/en−n0 >

n0∑
i=n0/2

τi (1 + 4 logn/n0)i−n0

>
1
2

n0∑
i=n0/2

(1 + 4 logn/n0)i−n0

≥ 1− (1 + 4 logn/n0)−n0/2

8 logn/n0
.

For n0 sufficiently large and for n > n0, the numerator of this last expression is
at least 1/2 so the entire expression is at least n0/16 logn. Combining all of the
bounds, we have

τn0Dn0+2

n
<

32 logn
n0

(
en−n0−2

en−n0−1
− 1
)
<

128 log2 n

n2
0

.

For n ∈ (n0, n
20
0 ), this is less than a constant times log2 n0/n

2
0.

For the second term, we have (1/n)
∑n0
i=2(τi+1 − τi)Di+1. Recall the differences

|τi+1 − τi| are less than a Ce−ci for some constants C, c > 0. For Di+1, we have an
upper bound of the form

Di+1 =
en−i
en

(
en+1−i
en−i

− 1
)
<

(
1 +

4 logn
n0

)i(4 logn
n0

)
.

Since n < n20
0 , by selecting n0 sufficiently large, we can guarantee 1 + 4 logn/n0 <

e−c/2. This implies (1/n)
∑n0
i=2(τi+1 − τi)Di+1 has an upper bound of the form

constant times logn/nn0 < 20 logn0/n
2
0.

For the third term, we have

τ1D2

n
< τ1

(
1 +

4 logn
n0

)
4 logn
nn0

.
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Again, for n ∈ (n0, n
20
0 ), this term has an upper bound of the form constant times

logn0/n
2
0.

Therefore, D2 −D1 can be written as the sum of terms, each of which is small
compared to 1/n0 for large n0. Therefore the result follows by the Difference
Argument.

5. Polynomial to exponential range

In this section, we follow the Ratio Argument to show that for some r > 0, if n0

is sufficiently large and n ∈ [n20
0 , e

rn0), then the nth coefficient of the power series
S(t)(1−p(t)) is bounded above by Sn times a negative constant over n0 (Polynomial
to Exponential Range Lemma). Specifically, by Lemma 4.6, we have sn−i/sn ≈
en−i/en. In this section we will show that en−i/en ≈ α−in where 1− p(1/αnλ) < 0.
Then the nth coefficient of S(t)(1 − p(t)) is approximately Sn times

1−
d∑
i=1

pi
λ−i

en−i
en
≈ 1−

d∑
i=1

pi(αnλ)−i = 1− p(1/αnλ) < 0.

In order to prove that ratios en−i/en approximate powers of αn, we make further
use of the recursion formula for en. However, in this section we think of this relation
in the following matrix form:

en
en−1

en−2

...
en−n0+1

 =


τ1/n τ2/n τ3/n · · · τn0/n

1 0 0 · · · 0
0 1 0 0
...

. . . . . . . . .
...

0 · · · 0 1 0




en−1

en−2

en−3

...
en−n0

 .

Letting An be the above matrix, we will get estimates on ratios en−1/en for n ≥ n20
0

by considering ratios of entries of AnAn−1 · · ·An−N+1v where v is an arbitrary
vector with positive entries. Since

χn(t) = det(It−An) = tn0 − τ1tn0−1/n− · · · − τn0/n,

there is a unique positive real root αn of χn(t) and the corresponding eigenvector
of An is (αn0−1

n , αn0−2
n , . . . , 1)T. Our goal is to show that en−1/en is approximately

equal to this eigenvalue αn.
We begin by obtaining bounds on αn and upper bounds on the other eigenvalues

of An. Using these, we will see that for N = n6
0, the vector (An)Nv is very close to a

vector in the the eigenspace for αn, so ratios of consecutive entries approximate αn.
Then we will need to see that applying the sequence of matrices AnAn−1 · · ·An−N+1

to a vector is approximately the same as applying theNth power of the single matrix
An.

Lemma 5.1. If n0 is sufficiently large and n > 2n0, then(
1

2n

)1/n0

< αn <

(
2n0

n

)1/n0

.

Proof. For the lower bound on αn, we only need to select n0 large enough so that
τn0 > 1/2. Then

αn0
n =

1
n

n0∑
i=1

τiα
n0−i
n >

τn0

n
>

1
2n
.
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For the upper bound on αn, we need n0 to be large enough so that
∑n0
i=1 τi/2n0 <

1. Then since
∑n0

i=1 τiα
−i
n /n = 1 and

∑n0
i=1 τi/n < 1, we know αn < 1. But since

αn < 1,

αn0
n =

1
n

n0∑
i=1

τiα
n0−i
n <

1
n

n0∑
i=1

τi <
2n0

n
.

Next, we would like an upper bound on the modulus of the other roots of the
characteristic polynomial for An. We will prove that if βn is the root of χn(t) of
the second largest modulus, then |βn|/αn < 1 − 1/n4

0. To begin we give a lower
bound on the distance between the Perron root and any other root of a polynomial
which has the same sign pattern as χn(t).

Lemma 5.2. Let f(t) = td −
∑d
i=1 fit

d−i be a polynomial with d > 2 and fi > 0
for all i. Let α > 0 be the unique positive real root of f(t). If β 6= α is a complex
number such that f(β) = 0, then

|α− β| > α/d.

Proof. Let g(t) =
∑d

i=1 git
d−i be the polynomial g(t) = f(t)/(t − α). Equating

coefficients from (t− α)g(t) and f(t), we see gdα = fd > 0 and αgi = fi + gi+1 > 0
for 1 ≤ i < d.

Now let β 6= α be a complex number with f(β) = 0. Then∣∣∣∣g(α)− g(β)
α− β

∣∣∣∣ ≤ g(α)− g(|β|)
α− |β| .(5.1)

The above follows since all of the coefficients of g(t) are positive and |αi − βi|/
|α− β| ≤ (αi − |β|i)/(α− |β|). By the Mean Value Theorem in R,

g(α)− g(|β|)
α− |β| = g′(x)(5.2)

for some x ∈ (|β|, α). Since g(t) has all positive coefficients and d > 2, the function
g′(t) is strictly increasing and g′(x) < g′(α).

Combining equations (5.1) and (5.2), and using g(β) = 0, g(α) = f ′(α) and
g′(α) = f ′′(α)/2, we have the following inequality:

|α− β| > 2f ′(α)
f ′′(α)

.

To prove the claim, we need a lower bound for 2f ′(α)/f ′′(α). Since f(α) = 0,

f ′(α) = dαd−1 −
d−1∑
i=1

(d− i)fiαd−i−1 =
d∑
i=1

ifiα
d−i−1.

Similarly,

f ′′(α) = d(d − 1)αd−2 −
d∑
i=1

(d− i)(d− i− 1)fiαd−i−2

=
d∑
i=1

[
2id− i2 − i

]
fiα

d−i−2.
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Multiplying our expression for f ′(α) by 2d and our expression for f ′′(α) by α, we
see 2df ′(α) > αf ′′(α). Therefore,

|α− β| > 2f ′(α)/f ′′(α) > α/d.

The above lemma gives a lower bound on the distance between αn and a second
root βn of χn(t). To get an upper bound on the modulus of βn, we write∣∣∣∣βnαn

∣∣∣∣n0

=

∣∣∣∣∣
∑d
i=1 τiβ

d−i
n∑d

i=1 τiα
d−i
n

∣∣∣∣∣
and get an upper bound on the right-hand side of the form one minus a constant
over n2

0. This bound follows since if we assume |βn| is close to αn, then by the
previous lemma the angle βn makes with the positive real axis cannot be too small.
Since τi ≈ 1 for large i, this forces enough cancellation in the sum

∑d
i=1 τiβ

d−i
n to

obtain the upper bound. We give an argument in a more general setting since it
will be used again later in another context.

Lemma 5.3. Let f1, f2, . . . , fd be a finite sequence with d > 2 an even number and
fi > 0 for all i. Let α > 0 be a real number and β a complex number with |β| < α.
Then ∣∣∣∣∣

∑d
i=1 fiβ

d−i∑d
i=1 fiα

d−i

∣∣∣∣∣ < 1− m|α− β|2
2α(α+M)2

where m = min fi+1/fi and M = max fi+1/fi.

Proof. First, let x > 0 be a real number. We claim

|α+ x|2 − x|α− β|2/α < |β + x|2.
Let θ be the angle that β makes with the positive real axis. Then

|β + x|2 = |β|2 + x2 + 2x|β| cos θ.

Now consider
(α + x)2 − x|α− β|2/α = α2 + x2 + 2xα− xα− x|β|2/α+ 2x|β| cos θ

> α2 + x2 + 2x|β| cos θ

> |β + x|2.
This proves the claim.

Now we have for any x > 0,∣∣∣∣β + x

α+ x

∣∣∣∣ <
√

1− x|α− β|2
α(α + x)2

< 1− x|α− β|2
2α(α+ x)2

.(5.3)

To finish the proof we write∣∣∣∣∣
d∑
i=1

fiβ
d−i

∣∣∣∣∣ ≤
d/2∑
i=1

∣∣f2i−1β
d−2i+1 + f2iβ

d−2i
∣∣

<

d/2∑
i=1

f2i−1α
d−2i

∣∣∣∣β +
f2i

f2i−1

∣∣∣∣ .
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We can also write
∣∣∣∑d

i=1 fiα
d−i
∣∣∣ =

∑d/2
i=1 f2i−1α

d−2i |α+ f2i/f2i−1|. Using inequal-
ity (5.3) with r = f2i/f2i−1, our upper bound follows.

We cannot directly apply the previous lemma to χn(t) since the coefficients τi
may be zero when i is small. However, we will be able to use the approximation
τi ≈ 1 and continue.

Lemma 5.4. If n0 is sufficiently large and βn 6= αn is a root of χn(t) = tn0 −∑n0
i=1 τit

n0−i/n, then

|βn| < (1 − 1/n4
0)αn for n ∈ (n4

0, e
rn0).

Proof. Recall, there exist constants C, c > 0 such that |τn − 1| < Ce−cn for all
n. Fix r ∈ (0, c/2) small enough for all previous lemmas. Fix n ∈ (n4

0, e
rn0). Let

α = αn and β = βn.
First, we write ∣∣∣∣βα

∣∣∣∣n =
∣∣∣∣∑n0

i=1 τiβ
n0−i∑n0

i=1 τiα
n0−i

∣∣∣∣(5.4)

and examine the effect of replacing τi by one on the right-hand side.
By Lemma 5.1, 1/α < (2n)1/n0 < 21/n0er. By the way we chose r, for sufficiently

large n0, the sum
∣∣∑n0

i=1(τi − 1)αn0−i
∣∣ is less than a universal constant times αn0 .

Also by Lemma 5.1, αn0 < 2n0/n < 2/n3
0.

If |t| < α, it follows that the absolute value of 1−
(∑n0

i=1 τit
n0−i/

∑n0
i=1 t

n0−i
)

is
less than a constant over n3

0. Therefore, we have a constant C′ > 0 such that∣∣∣∣βα
∣∣∣∣n0

<

∣∣∣∣∑n0
i=1 β

n0−i∑n0
i=1 α

n0−i

∣∣∣∣ (1 +
C′

n3
0

)
.

Combining Lemmas 5.2 and 5.3,∣∣∣∣∑n0
i=1 β

n0−i∑n0
i=1 α

n0−i

∣∣∣∣ < 1− α

2n2
0(α+ 1)2

< 1− α

8n2
0

.

By Lemma 5.1, α > 2−1/n0e−r; we may assume that α is bounded below by 1/2.
Altogether, we have a constant C′′ > 0 such that if n0 is sufficiently large, then∣∣∣∣βα

∣∣∣∣n0

<

(
1− C′′

n2
0

)
.

For sufficiently large n0, by taking the n0 root of both sides and noting
(1− x)1/n < 1− x/n we have ∣∣∣∣βα

∣∣∣∣ < 1− 1/n4
0.

Now we have estimates from Lemma 5.1 on the Perron eigenvalue of An and from
Lemma 5.4 on the second largest modulus of a root. We would like to use these to
show that if v is a vector with nonnegative entries and N ≥ n6

0, then (An)Nv is
close to the eigenvector for An. It will be convenient for us to use the matrix Bn
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where Bn is An scaled by the Perron eigenvalue αn, i.e.,

Bn =


τ1/nαn τ2/nα

2
n τ3/nα

3
n · · · τn0/nα

n0
n

1 0 0 · · · 0
0 1 0 0
...

. . . . . . . . .
...

0 · · · 0 1 0

 .

For the matrix Bn the maximal eigenvalue is 1 and the column eigenvector is
(1, 1, . . . , 1)T. If the matrix Bn is multiplied by a vector which has the scaled
coefficients en−iαn−in in the ith position for i = 1, 2, . . . , n0 the result is a vector of
the scaled coefficients en−jαn−jn for j = 0, 1, . . . , n0 − 1.

It will also be convenient for us to use the ∞-norm in the following lemmas, i.e.,
for u = (u1, u2, . . . , un0), ‖u‖ = max |uj|.

Lemma 5.5. There exist constants K5, k5 > 0 such that if n0 is sufficiently large
and n ∈ (n4

0, e
rn0), then the following holds. Let v ∈ (R+)n0 . For j = 1, 2, . . . , n0,[

(Bn)n
6
0v
]
j

= a+ εj

where a > ‖v‖/n2
0 and |εj | < ‖v‖K5e

−k5n0 .

Proof. Assume r > 0 is small enough for all previous lemmas. Fix n ∈ (n4
0, e

rn0).
Let B = Bn, α = αn. Let v ∈ (R+)n0 .

Let c = (1, 1, . . . , 1)T, the eigenvector for the eigenvalue one. By Lemma 5.4,
all other eigenvalues have modulus less than 1 − 1/n4

0. Let W denote the span of
these complementary eigenspaces. We wish to write the vector v as ac + w where
w ∈W . Then we will have

BNv = ac +BNw

and our result will follow from a lower bound on a and an upper bound on ‖BNw‖.
To produce the lower bound for a, let r = (r1, r2, . . . , rn0) be the row eigenvector

for 1. Here rj =
∑n0

i=j τiα
−i/n. The column vector rT is orthogonal to all of W .

To see this suppose β 6= 1 and (Iβ −B)mx = 0. Since r(Iβ −B) = (β − 1)r,

(β − 1)mrx = r(Iβ −B)mx = 0.

Since rT is orthogonal to W we can write

v =
(

rv
r·r
)
rT + w1 and c =

(
rc
r·r
)
rT + w2 where w1,w2 ∈W.

Eliminating rT and solving for v,

v =
(

rv
rc

)
c + w1 −

(
rv
rc

)
w2.

Our lower bound for a =
(

rv
rc

)
follows from Lemma 5.1. For n0 sufficiently large,

rv ≥ ‖v‖min rj ≥ ‖v‖τn0α
−n0/n > ‖v‖/4n0

and

rc =
n0∑
i=1

iτiα
−i/n < n0

n0∑
i=1

τiα
−i/n = n0.

Therefore a > ‖v‖/4n2
0.

Let w = w1 −
(

rv
rc

)
w2. Since rv ≤ rc‖v‖, we have a ≤ ‖v‖ and ‖w‖ ≤

‖v‖+ a‖c‖ ≤ 2‖v‖.
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Now we would like an upper bound for ‖Bn6
0w‖. Using Lemma A.2, there is an

orthonormal matrix C over C such that CTBC is upper triangular. The diagonal
entries of this matrix are the eigenvalues of B and the off-diagonal entries are at
most n0 in modulus. Without loss of generality, assume the eigenvalue one is in
the (1, 1) entry of CTBC. Then to estimate ‖Bn6

0w‖, we consider the submatrix of
CTBC which results from deleting the first row and first column. By Lemma A.3
the entries of this matrix are all less than the following expression:

n0
n0

(
n6

0 + n0 − 1
n0

)
(1− 1/n4

0)n
6
0−n0 .

By Lemma A.4, (
n6

0 + n0 − 1
n0

)
< n0(1 + n−5

0 )n0
6
(1 + n5

0)n0

and there is a constant c > 0 such that n0
n0
(
n6

0+n0−1
n0

)
< ecn0 logn0 . We know

(1−1/n4
0)n

6
0 < e−n

2
0 , therefore the last term (1−1/n4

0)n
6
0−n0 is less than e−n

2
0+1/n3

0 .
The term e−n

2
0 makes the entire expression less than an exponentially small function

of n0.
Therefore, we can conclude that there exist constants K5, k5 > 0 such that for

n0 sufficiently large,

‖Bn6
0w‖ < K5‖v‖e−k5n0 .

It remains to show that the difference between using the matrix (An)n
6
0 and

the product AnAn−1 · · ·An−n6
0+1 is negligible. This follows fairly easily since one

obtains An−k from An by scaling some entries by a factor of n/(n− k). For large
n0, since n ≥ n20

0 and k < n6
0, this factor is very close to one.

The estimates we need are a little more delicate than this so again it will be
convenient to use the scaled matrices, but we would like to scale all matrices by
the same factor. Fix n ∈ [n20

0 , e
rn0) and let Bn−i denote the matrix An−i scaled by

αn, the eigenvalue of An. The maximal eigenvalue of Bn−i will then be αn/αn−i.

Lemma 5.6. If n0 is sufficiently large and n ≥ n20
0 , then for v ∈ (R)n0 ,

‖(Bn)n
6
0v −BnBn−1 · · ·Bn−n6

0+1v‖ < n−4
0 ‖v‖.

Proof. Note for any 1 ≤ i ≤ n6
0, the only nonzero row of Bn−i − Bn has a sum of∑n0

i=1 iτiα
−i
n /n(n − i) = i/(n − i). If n20

0 − n6
0 > n16

0 , this sum is less than n−10
0 .

Therefore, ‖Bnv −Bn−iv‖ ≤ n−10
0 ‖v‖.

Noting also that ‖Bn−iv‖ ≤ ‖v‖ for all i, we have

‖(Bn)n
6
0v −BnBn−1 · · ·Bn−n6

0+1v‖ ≤ n6
0n
−10
0 ‖v‖ ≤ n−4

0 ‖v‖.

Recall our definition

R(t) = (1− p(t))S(t).
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Polynomial to Exponential Range Lemma. For some r > 0, there exists a
constant K6 > 0 such that if n0 is sufficiently large, then

Rn < −K6Sn/n0 for n ∈ [n20
0 , e

rn0).

Proof. Recall p′(1/λ) > 0. Fix δ > 0 such that |x − 1| < δ implies p′(1/xλ) >
p′(1/λ)/2. Fix r > 0 small enough so that e−r > 1 − δ/2 and so that all previous
lemmas hold.

Fix n ∈ [n20
0 , e

rn0). We have the following formula for Rn:

Rn = λnsn

(
1−

d∑
i=1

piλ
−i sn−i

sn

)
.

Lemma 4.6 implies that the difference between the above expression in parentheses
and that expression with sn−i/sn replaced by en−i/en is no more than a constant
times λ−n0/6. We will now use the lemmas of this section to show that en−i/en ≈
α−in , so

1−
d∑
i=1

piλ
−i en−i

en
≈ 1−

d∑
i=1

pi(αnλ)−i = 1− p(1/αnλ).(5.5)

Lemma 5.1 provides the lower bound (2n)−1/n0 for the Perron eigenvalue αn
of the matrix An. Since n < ern0 we have αn > 2−1/n0e−r. By choice of r, for
sufficiently large n0,

1− p(1/αnλ) < −p
′(1/λ)
2λ

|αn − 1|.

Lemma 5.1 also provides an upper bound αn < (2n0/n)1/n0 . Since n ≥ n20
0 , for

sufficiently large n0, we have αn < 1 − 1/n0. Therefore, 1 − p(1/αnλ) is less than
a negative constant over n0.

Following the Ratio Argument, it remains to show that the approximation in
equation (5.5) has an error which is small compared to 1/n0. Let m = n−n6

0, and let
α = αn. Let v denote the vector (em−1α

−m+1, em−2α
−m+2, . . . , em−n0α

−m+n0)T.
Then there exist constants C, c > 0 such that for 1 ≤ i ≤ n0,

en−iα
−n+i = a+ εi + δi

where a > ‖v‖/4n2
0, |εi| < C‖v‖e−cn0 (Lemma 5.5) and |δi| < ‖v‖/n4

0 (Lemma 5.6).
For n0 sufficiently large, both |εi|/a and |δi|/a are less than a constant over n2

0.
Therefore the difference between αien−i/en and 1 is less than a constant over n2

0.
Since this error is smaller than 1/n0, the result follows from the Ratio Argument.

6. Final factorization

In order to complete the proof, we multiply (1 − p(t))S(t) by a power series of
the form (1− q(t))−1 where qi > 0 for all i. We wish to have the nth coefficient of
(1− q(t))−1 closely approximate βn for some β.

Fix r > 0 small enough to insure the Polynomial to Exponential Range Lemma
holds, 1− p(er/2/λ) < 0 and λe−r/2 > 1. Let β = λe−r/2 and let

1− q(t) = 1−
n3

0∑
i=n2

0+1

⌊
βi

n3
0 − n2

0

⌋
ti.



798 KI HANG KIM, NICHOLAS S. ORMES, AND FRED W. ROUSH

We will show that the Perron value for 1 − q(t) is approximately β. Then using
techniques similar to those in Section 5 (Polynomial to Exponential Range), we will
show that consecutive coefficients of (1 − q(t))−1 have ratios approximately equal
to β. Then, letting U(t) = (1 − q(t))−1 and V (t) = (1 − p(t))U(t), we will show
that for n > n20

0 ,

Vn = Un

(
1−

d∑
i=1

piUn−i/Un

)
≈ Un(1− p(1/β)) < 0.

It will remain then to combine all of the lemmas to show that the nth coefficient
of (1− p(t))S(t)U(t) is negative for all n.

Lemma 6.1. Let γ denote the Perron value of 1−q(t). There is a constant K7 > 0
such that if n0 is sufficiently large, then

|γ − β| < K7β
−n2

0 .

Proof. First notice that 1 − q(1/β) > 0 which implies γ < β. Therefore, by the
Mean Value Theorem there is a t ∈ (1/β, 1/γ) such that

|1/β − 1/γ| = (1− q(1/β))/|q′(t)|.
We obtain an upper bound on 1− q(1/β) from

1− q(1/β) = 1−
n3

0∑
i=n2

0+1

⌊
βi

n3
0 − n2

0

⌋
β−i ≤

n3
0∑

i=n2
0+1

β−i.

Therefore, 1− q(1/β) < β−n
2
0/(β − 1).

Now since t > 1/β and q(t) has all nonnegative coefficients,

|q′(t)| > q′(1/β) =
n3

0∑
i=n2

0+1

i

⌊
βi

n3
0 − n2

0

⌋
β−i+1.

Taking only the last term in the sum, for n0 sufficiently large, we see |g′(t)| > β.
The desired inequality follows.

Now in order to estimate the coefficients of U(t) = (1 − q(t))−1, we will use the
recursion relation

Un =
n3

0∑
i=n2

0+1

qiUn−i.

As in Section 5, we can think of this relation as being given by a matrix. This
matrix has Perron eigenvalue γ ≈ β, so we will be able to use the same proofs we
used in Section 5 to show Un/Un+1 ≈ 1/β. Letting V (t) = (1− p(t))U(t), this will
give Vn ≈ Un(1 − p(1/β)).

Lemma 6.2. There exist constants K8,K9, k8 > 0 such that if n0 is sufficiently
large and n > n20

0 , then ∣∣∣∣Un+1

Un
− γ
∣∣∣∣ < K8e

−k8n
3
0

and

Vn < −K9Un.
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Proof. Let 1/ζ be any other root of 1−q(t). By Lemma 5.2 we know |γ−ζ| > γ/n3
0.

We have bounds on the ratio of consecutive coefficients

β

(
1− n3

0 − n2
0

βn
2
0

)
<
qi+1

qi
< β

(
1− n3

0 − n2
0

βn
2
0

)−1

.

Therefore using Lemma 5.3, there is a constant C > 0 such that∣∣∣∣ ζγ
∣∣∣∣n3

0

=

∣∣∣∣∣∣
∑n3

0
i=n2

0+1
qiζ

n3
0−i∑n3

0
i=n2

0+1
qiγn

3
0−i

∣∣∣∣∣∣ < 1− C/n6
0.

Taking the n3
0 root of both sides, for sufficiently large n0,

|ζ| < (1− 1/n12
0 )γ.

Following the argument in Lemma 5.5, there exist constants K8, k8 > 0 such that
if we multiply an arbitrary vector v with nonnegative entries by the recursion
matrix raised to the n19

0 power, the result will be a vector u whose entries satisfy
|uj+1/uj − γ| < K8e

−k8n
3
0 . Since the recursion formula applies for all n > n3

0, this
gives the desired estimate on ratios of coefficients Un+1/Un for n > n20

0 > n19
0 +n3

0.
Therefore by the previous lemma, when n0 is sufficiently large, the ratio of

coefficients Un−i/Un is as close as we like to β−i for i ≤ d. Therefore the quantity
1 −

∑d
i=1 piUn−i/Un is as close as we like to 1 − p(1/β). Since we chose β to be

a fixed amount less than λ, for some K9 > 0, 1 −
∑d

i=1 piUn−i/Un < −K9 and
Vn < −K9Un.

The final step is to combine all of these estimates and show that the nth coeffi-
cient of (1−p(t))S(t)U(t) is always negative. For this, we consider these coefficients
in two ranges.

For n < ern0 , we have R(t) = (1 − p(t))S(t) and the nth coefficient of R(t)U(t)
can be written as

Rn + Un2
0
Rn−n2

0
+ Un2

0+1Rn−n2
0−1 + · · ·+ Un−n0−1Rn0+1 + Un.

By the lemmas from Section 4, the Rn coefficients are negative. All coefficients
of U(t) are nonnegative so all coefficients in the sum above are nonpositive except
Un. To show that the entire sum is nonpositive, all we need to show is that Un is
smaller than the absolute value of just one other term in the sum.

Then for n > e3rn0/4 we have V (t) = (1 − p(t))U(t). The nth coefficient of
S(t)V (t) can be written as

Sn + Vn2
0
Sn−n2

0
+ Vn2

0+1Sn−n2
0−1 + · · ·+ Vn−1S1 + Vn.

We know that all but the first n20
0 terms of V (t) are negative and all terms of S(t)

are positive. We will show that the first n20
0 terms are small compared to the entire

sum.
In order to show that the positive terms in the above summation do not affect

the overall sign, we will need upper bounds for coefficients in U(t) and in large
degree terms in S(t).

Lemma 6.3. The coefficient of tn in U(t) = (1 − q(t))−1 is less than nβn for all
n.
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Proof. We consider the nth coefficient of (1 − q(t))−1 =
∑∞

i=0 (q(t))i. The result
follows from the fact that the coefficient of tn from (q(t))i is always less than βn.
This holds since the number of ways to select i coefficients of q(t) whose indices
sum to n is less than or equal to (n3

0 − n2
0)i.

Lemma 6.4. There exists a δ > 0 such that if n0 is sufficiently large and n >
e3rn0/4, then Sn < (β − δ)n.

Proof. Recall S(t) =
∏n0
i=1

(
1− ti

)o(i). For i dividing n, we find estimates on(o(i)+n/i−1
n/i

)
, the nth coefficient of the series (1− ti)−o(i). We use the formula(

o(i) + n/i− 1
n/i

)
< n

(
1 +

n

io(i)

)o(i)(
1 +

io(i)
n

)n/i
from Lemma A.4. We would like to show that the logarithm of the right-hand side
is less than n log(β − 2δ) for n > e3rn0/4.

The logarithm of the right-hand side is the sum of three terms. The first, log n,
is clearly small compared to n.

For the second term, o(i) log(1+n/io(i)), there are two cases. If i < logn0, then

o(i) < λlog n0 = nlog λ
0 <

(
4 logn

3r

)log λ

.

In the case i ≥ logn0, we use log(1 + x) < x to show

o(i) log
(

1 +
n

io(i)

)
<
n

i
<

n

logn0
.

In either case, by selecting n0 large enough the ratio of this term with n is as small
as we like.

For the third term, we have three cases. If i < logn0, then

n

i
log
(

1 +
io(i)
n

)
< o(i) <

(
4 logn

3r

)log λ

.

If i ≥ logn0 and io(i) < n, then

n

i
log
(

1 +
io(i)
n

)
<
n

i
log 2 ≤ n log 2

logn0
.

In both of these cases, for n0 large, the term is small compared to n. If i ≥ logn0

and io(i) ≥ n, then we may assume io(i) < 2λi. Therefore

n

i
log
(

1 +
io(i)
n

)
<
n

i
log
(

4λi

n

)
= n

(
logλ+

log 4
i
− logn

i

)
.

Recalling logn > 3rn0/4, this term has an upper bound of the form

n

i
log
(

1 +
io(i)
n

)
< n

(
logλ+

log 4
logn0

− 3r
4

)
.

Since log β = logλ − r/2, in this last case, we can choose a δ > 0 such that for
sufficiently large n0, the term is less than n log(β − 3δ).

Altogether, we may assume that the nth coefficient of (1 − ti)−o(i) is at most
(β − 2δ)n for n > e3rn0/4. The nth coefficient in the product

∏n0
i=1(1 − ti)−o(i) is

made up of at most
(
n+n0−1

n

)
terms each of which is less than (β − 2δ)n. Using
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the upper bound
(
n+n0−1

n

)
< (2n)n0 , this tells us that if n0 is sufficiently large and

n > e3rn0/4, then

Sn < (2n)n0(β − 2δ)n < (β − δ)n.

We are now ready to combine the previous lemmas to show that the desired
factorization of 1− p(t) over the ring of formal power series exists.

Final Factorization Lemma. There is a choice of β > 0 and n0 ∈ N such that
for

q(t) =
n3

0∑
i=n2

0+1

⌊
βi

n3
0 − n2

0

⌋
ti

the nth coefficient of the product

1− p(t)
(1 − q(t))

∏n0
i=1 (1− ti)o(i)

is nonpositive for all n ≥ 1.

Proof. Select r > 0 small enough for all previous lemmas, then select n0 large
enough for all previous lemmas. For n ∈ (0, n0], the nth coefficient of the product
1− p(t)(1− q(t))

∏n0
i=1

(
1− ti

)−o(i)
is zero.

For n > n0 we follow the aforementioned argument. Recall the notation R(t) =
(1 − p(t))S(t) and U(t) = (1 − q(t))−1. By the lemmas of Sections 4 and 5, for
n ∈ (n0, e

rn0) the nth coefficient R(t) is nonpositive. All coefficients of U(t) are
nonnegative. Therefore, for n ∈ (n0, e

rn0) it suffices to show that Un is smaller
than the absolute value of just one term of the form RiUn−i where i > 0.

Region I: Fix n ∈ (n0, n
3
0]. Pick ε > 0 such that λ−2ε > β. By the Polynomial

Range Lemma, there is a constant C1 > 0 such that Rn < −C1Sn/n0. Also,
it follows from Lemmas 4.5 and 4.6 that there is a constant C2 > 0 such that
Sn > C2(λ− ε)n. Therefore, ∣∣∣∣UnRn

∣∣∣∣ < nn0β
n

C1C2(λ − ε)n .

For n0 sufficiently large, this is less than one.
Region II: Fix n ∈ (n3

0, e
rn0). Here we compare Un to Un−n0−1Rn0+1. We have

|Rn0+1| > C2(λ − ε)n0+1/n0 and Un < (β + ε)n0+1Un−n0−1 by the results of this
section. Therefore, ∣∣∣∣ Un

Rn0+1Un−n0−1

∣∣∣∣ < n0(β + ε)n0+1

C2(λ− ε)n0+1
.

For n0 sufficiently large, this is less than one.
Region III: Now for n > ern0 we change the argument. Recall the notation

V (t) = (1− p(t))U(t). By Lemma 6.2 the nth coefficient of V (t) is nonpositive for
n > n20

0 . Since all coefficients of S(t) are nonnegative it suffices to show that Vn is
larger in absolute value than

∑n20
0
i=0 SiVn−i where i < n.

Fix n ∈ [ern0 ,∞). Assuming ern0 > e3rn0/4 + n20
0 , by Lemma 6.4, Sn−i <

(β − δ)n−i for 0 < i < n20
0 . Also, for i < n20

0 , by the results of this section,
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there exist constants C3, C4 > 0 such that |Vn| > C3Un > C4(β − δ/2)n−n
20
0 |Vi|.

Therefore, ∣∣∣∣∣Sn +
∑n20

0
i=1 Sn−iVi
Vn

∣∣∣∣∣ < n20
0

C4

(
β − δ
β − δ/2

)n−n20
0

(β − δ)n
20
0 .

For n0 sufficiently large, this is less than one.

The above shows that we may factor 1− p(t) in the form appearing in the Main
Reduction Lemma. This proves the remaining direction of the theorem.

Appendix A. Lemmas on binomial coefficients and matrix theory

These results are probably known to experts in the appropriate areas but we do
not have convenient references.

Lemma A.1. Suppose w1 ≤ w2 ≤ · · · ≤ wn are real numbers with
∑n

i=1 wi = 1.
If r1 ≤ r2 ≤ · · · ≤ rn, then

n∑
i=1

wiri ≥ (1/n)
n∑
i=1

ri.

Proof. Since the weights wi are increasing there is an index j such that wi < 1/n
for all 1 ≤ i < j and wi ≥ 1/n for all j ≤ i ≤ n.

Notice that
n∑
i=j

(wi − 1/n) =
j−1∑
i=1

(1/n− wi).

Therefore
n∑
i=j

(wi − 1/n)ri ≥
j−1∑
i=1

(1/n− wi)ri.

Rearranging we obtain the desired inequality.

Lemma A.2. Let A be an n×n matrix over R. Then there is a unitary, orthonor-
mal matrix C over C such that CTAC is upper triangular.

Proof. Let v1,v2, . . . ,vn ∈ Cn be a set of C-linearly independent column eigen-
vectors for A. Apply Gram-Schmidt to these vectors to create a set of orthonormal
vectors u1,u2, . . . ,un0−1 ∈ Cn0 such that Auk ∈ span{u1,u2, . . . ,uk} for all k.

Let C be the n×n matrix with columns uj . Then CTAC is a triangular matrix
since uT

i Auj = 0 for i > j.

Lemma A.3. If A is an n0 × n0 triangular matrix over R+ with diagonal entries
less than β and off-diagonal entries less than K > β, then the entries of AN are
all less than Kn0

(
N+n0+1

N

)
βN−n0 .

Proof. The entry AN (i, j) is the sum of all possible products of the form

A(i, k1)A(k1, k2) · · ·A(kN−1, j).

Since A is triangular, only products where i ≤ k1 ≤ k2 ≤ · · · ≤ kN−1 ≤ j are
nonzero. Therefore there are at most

(
N+n0−1

N

)
nonzero products in this sum.

We have the bounds A(kn, kn+1) < K for kn < kn+1 and A(kn, kn+1) < β for
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kn = kn+1. There are at most n0 termsA(kn, kn+1) in each product with kn < kn+1.
Therefore each term AN (i, j) is less than Kn0

(
N+n0−1

N

)
βN−n0 .

Lemma A.4. For all n, k ≥ 1,(
n+ k − 1

k

)
< n(1 + k/n)n(1 + n/k)k.

Proof. We have the following estimates on log(n!) =
∑n
i=1 log i:∫ n

1

log xdx < log(n!) <
∫ n+1

1

log xdx.

Thus we obtain

log
(
n+ k − 1

k

)
< (n+ k) log(n+ k)− k log k

− (n− 1) log(n− 1)− 2.

Using the inequality (n− 1) log(n− 1) + 2 > (n− 1) logn and combining terms,

log
(
n+ k − 1

k

)
< n log(1 + k/n) + k log(1 + n/k) + logn.

This gives the inequality.

Appendix B. Lind/Marcus example

The polynomial 1− p(t) = 1 − 4t+ 6t2 − 6t3 has a factorization
∏3
i=1(1 − λit)

where λ1 ≈ 2.57474 and λ2 = λ3 ≈ .71263 + 1.35000i. Lind and Marcus [LM95,
Chapter 11] give (λ1, λ2, λ3) as an example of an n-tuple satisfying the Boyle-
Handelman conditions, but one for which there was no known primitive matrix
with the corresponding nonzero spectrum. We will need a polynomial matrix A(t)
of at least size 4× 4 to realize 1− p(t). To see this, suppose A(t) is a 3× 3 matrix
with entries in tZ+[t],

A(t) =

a(t) b(t) c(t)
d(t) e(t) f(t)
g(t) h(t) i(t)


such that det(I − A(t)) = 1 − p(t). Equating first and second degree coefficients,
we see a1 + e1 + i1 = 4 and a1e1 + a1i1 + e1i1 ≥ 6. This is impossible since all
coefficients are nonnegative integers.

Following our factorization scheme, we begin by dividing 1− p(t) by powers of
1− ti. A calculation shows

1− p(t)
1− t = 1− 3t+ 3t2 − 3t3 − 3t4 − 3t5 − 3t6 − 3t7 − 3t8 − · · · ,

1− p(t)
(1 − t)2

= 1− 2t+ t2 − 2t3 − 5t4 − 8t5 − 11t6 − 14t7 − 17t8 − · · · ,

1− p(t)
(1 − t)3

= 1− t− 2t3 − 7t4 − 15t5 − 26t6 − 40t7 − 57t8 − · · · .
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The last rational power series seems to be of the correct form. In fact, we notice
from the Main Reduction Lemma that it suffices to have an N > 3 such that
the coefficients of the power series (1 − p(t))(1 − t)−1 and (1 − p(t))(1 − t)−2 are
nonpositive in degrees N to 2N and the coefficients of (1 − p(t))(1 − t)−3 are
nonpositive in degrees 1 to N . The value N = 4 suffices here.

Following the scheme in the Main Reduction Lemma,

a0(t) = 4t− 6t2 + 6t3,

a1(t) = 3t− 3t2 + 3t3 + 3t4 + 3t5 + 3t6 + 3t7 + 3t8,

a2(t) = 2t− t2 + 2t3 + 5t4 + 8t5 + 11t6 + 14t7 + 17t8,

a3(t) = t+ 2t3 + 7t4 + 15t5 + 26t6 + 40t7 + 57t8

and

bk(t) = (1 − ak(t))(1 − t)− 1− ak−1(t)

which gives

b1(t) = 3t9, b2(t) = 17t9, b3(t) = 57t9.

Thus we construct the matrix

A(t) =


t+ 2t3 + 7t4 + 15t5 + 26t6 + 40t7 + 57t8 t 0 0

57t8 t t 0
17t7 0 t t
3t6 0 0 t


with det(I− A(t)) = 1 − 4t+ 6t2 − 6t3. Notice that A(t)3 has no nonzero entries,
i.e., A(t) is primitive.

We note that in this case, one can actually use the noninteger value of N = 5/2
to truncate the power series. This method results in the matrix

B(t) =


t+ 2t3 + 7t4 + 15t5 t 0 0

15t5 t t 0
8t4 0 t t
3t3 0 0 t


with det(I − B(t)) = 1 − 4t + 6t2 − 6t3. If one writes down a primitive integer
matrix which corresponds to B(t) in the most straightforward way, the result is a
179× 179 matrix. There are certainly smaller size matrices with the same nonzero
spectrum. Determining the minimal size of a nonnegative integer matrix in this
case remains an interesting open problem.
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