On the Brylinski-Kostant filtration
HTML articles powered by AMS MathViewer
- by Anthony Joseph, Gail Letzter and Shmuel Zelikson;
- J. Amer. Math. Soc. 13 (2000), 945-970
- DOI: https://doi.org/10.1090/S0894-0347-00-00347-7
- Published electronically: July 20, 2000
- PDF | Request permission
Abstract:
Let $\mathfrak g$ be a semisimple Lie algebra and $V$ a finite dimensional simple $\mathfrak g$ module. The Brylinski-Kostant (simply, BK) filtration on weight spaces of $V$ is defined by applying powers of a principle nilpotent element. It leads to a $q$-character of $V$. Through a result of B. Kostant the BK filtration of the zero weight space is determined by the so-called generalized exponents of $\mathfrak g$. Later R. K. Brylinski calculated the BK filtration on dominant weights of $V$ assuming a vanishing result for cohomology later established by B. Broer. The result could be expressed in terms of $q$ polynomials introduced by G. Lusztig. In the present work, Verma module maps are used to determine the BK filtration for all weights. To do this several filtrations are introduced and compared, a key point being the graded injectivity of the ring of differential operators on the open Bruhat cell viewed as a $\mathfrak g$ module under diagonal action. This replaces cohomological vanishing and thereby Brylinski’s result is given a new proof. The calculation for non-dominant weights uses the fact that the corresponding graded ring is a domain as well as a positivity result of G. Lusztig which ensures that there are no accidental cancellations. This method allows one to compare the BK filtrations in adjacent chambers.References
- Henning Haahr Andersen and Jens Carsten Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), no. 4, 487–525. MR 766011, DOI 10.1007/BF01450762
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Structure of representations that are generated by vectors of highest weight, Funkcional. Anal. i Priložen. 5 (1971), no. 1, 1–9 (Russian). MR 291204, DOI 10.1007/BF01075841
- Walter Borho and Jean-Luc Brylinski, Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules, Invent. Math. 69 (1982), no. 3, 437–476. MR 679767, DOI 10.1007/BF01389364
- Bram Broer, Line bundles on the cotangent bundle of the flag variety, Invent. Math. 113 (1993), no. 1, 1–20. MR 1223221, DOI 10.1007/BF01244299
- Ranee Kathryn Brylinski, Limits of weight spaces, Lusztig’s $q$-analogs, and fiberings of adjoint orbits, J. Amer. Math. Soc. 2 (1989), no. 3, 517–533. MR 984511, DOI 10.1090/S0894-0347-1989-0984511-X
- Ranee Kathryn Brylinski, Twisted ideals of the nullcone, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 289–316. MR 1103594
- Nicole Conze, Algèbres d’opérateurs différentiels et quotients des algèbres enveloppantes, Bull. Soc. Math. France 102 (1974), 379–415 (French). MR 374214, DOI 10.24033/bsmf.1786
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques [Scientific Reports], Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 498737
- O. Gabber and A. Joseph, On the Bernšteĭn-Gel′fand-Gel′fand resolution and the Duflo sum formula, Compositio Math. 43 (1981), no. 1, 107–131. MR 631430
- Phillip A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 185–251. MR 258070
- Wim H. Hesselink, Characters of the nullcone, Math. Ann. 252 (1980), no. 3, 179–182. MR 593631, DOI 10.1007/BF01420081
- Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943, DOI 10.1007/BFb0069521
- Anthony Joseph, Enveloping algebras: problems old and new, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 385–413. MR 1327542, DOI 10.1007/978-1-4612-0261-5_{1}4
- Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. MR 1315966, DOI 10.1007/978-3-642-78400-2
- Anthony Joseph, Orbital varieties, Goldie rank polynomials and unitary highest weight modules, Algebraic and analytic methods in representation theory (Sønderborg, 1994) Perspect. Math., vol. 17, Academic Press, San Diego, CA, 1997, pp. 53–98. MR 1415842, DOI 10.1016/B978-012625440-2/50003-3
- Anthony Joseph, Sur l’annulateur d’un module de Verma, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 237–300 (French, with English and French summaries). With an outline of the annihilation theorem by M. Gorelik and E. Lanzmann. MR 1649628 [J5]J5A. Joseph, On the Kostant-Parthasarathy-Ranga Rao-Varadarajan determinants, I. Injectivity and Multiplicities, preprint, Weizmann, 1998.
- Anthony Joseph, A surjectivity theorem for rigid highest weight modules, Invent. Math. 92 (1988), no. 3, 567–596. MR 939476, DOI 10.1007/BF01393748
- A. Joseph, A generalization of the Gelfand-Kirillov conjecture, Amer. J. Math. 99 (1977), no. 6, 1151–1165. MR 460397, DOI 10.2307/2374020 [JL]JLA. Joseph and G. Letzter, On the Kostant-Parthasarathy-Ranga Rao-Varadarajan determinants, II. Construction of the KPRV determinants, preprint, Weizmann, 1998. [JLT]JLTA. Joseph, G. Letzter and T. Todoric, On the Kostant-Parthasarathy-Ranga Rao-Varadarajan determinants, III. Computation of the KPRV determinants, preprint, Weizmann, 1998.
- Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032. MR 114875, DOI 10.2307/2372999
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
- George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098 [P]P D. Peterson, A formula for the generalized exponents of representations, manuscript, M.I.T., 1978. [Z]ZS. Zelikson, Cristallisation et $q$-analogues dans la catégorie $\mathcal {O}$, thèse, Paris, 1997.
Bibliographic Information
- Anthony Joseph
- Affiliation: Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel and Institut de Mathématiques Fondamentales, Université Pierre et Marie Curie, 175 rue du Chevaleret, Plateau 7D, 75013 Paris Cedex, France
- Email: joseph@wisdom.weizmann.ac.il
- Gail Letzter
- Affiliation: Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061-0123
- MR Author ID: 228201
- Email: letzter@calvin.math.vt.edu
- Shmuel Zelikson
- Affiliation: Laboratoire S.D.A.D., Département de Mathématiques, Campus II, Université de Caen, Boite Postale 5186, 14032 Caen Cedex, France
- Email: zelik@unicaen.fr
- Received by editor(s): September 27, 1999
- Received by editor(s) in revised form: May 1, 2000
- Published electronically: July 20, 2000
- Additional Notes: This work was supported in part by EC TMR network “Algebraic Lie Representations” grant no. ERB FMRX-CT97-0100 and grant no. 7773 from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel. The second author was also supported in part by NSF grant no. DMS-9753211 and NSA grant no. MDA 904-99-1-0033.
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 13 (2000), 945-970
- MSC (2000): Primary 17B35
- DOI: https://doi.org/10.1090/S0894-0347-00-00347-7
- MathSciNet review: 1775740