Vaught’s conjecture on analytic sets
HTML articles powered by AMS MathViewer
- by Greg Hjorth
- J. Amer. Math. Soc. 14 (2001), 125-143
- DOI: https://doi.org/10.1090/S0894-0347-00-00349-0
- Published electronically: September 18, 2000
- PDF | Request permission
Abstract:
Let $G$ be a Polish group. We characterize when there is a Polish space $X$ with a continuous $G$-action and an analytic set (that is, the Borel image of some Borel set in some Polish space) $A\subset X$ having uncountably many orbits but no perfect set of orbit inequivalent points. Such a Polish $G$-space $X$ and analytic $A$ exist exactly when there is a continuous, surjective homomorphism from a closed subgroup of $G$ onto the infinite symmetric group, $S_\infty$, consisting of all permutations of $\mathbb {N}$ equipped with the topology of pointwise convergence.References
- Howard Becker, The topological Vaught’s conjecture and minimal counterexamples, J. Symbolic Logic 59 (1994), no. 3, 757–784. MR 1295968, DOI 10.2307/2275907
- Howard Becker, Polish group actions: dichotomies and generalized elementary embeddings, J. Amer. Math. Soc. 11 (1998), no. 2, 397–449. MR 1478843, DOI 10.1090/S0894-0347-98-00258-6
- Howard Becker and Alexander S. Kechris, Borel actions of Polish groups, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 334–341. MR 1185149, DOI 10.1090/S0273-0979-1993-00383-5
- Howard Becker and Alexander S. Kechris, The descriptive set theory of Polish group actions, London Mathematical Society Lecture Note Series, vol. 232, Cambridge University Press, Cambridge, 1996. MR 1425877, DOI 10.1017/CBO9780511735264
- Steven Buechler and Ludomir Newelski, On the geometry of $U$-rank $2$ types, Logic Colloquium ’90 (Helsinki, 1990) Lecture Notes Logic, vol. 2, Springer, Berlin, 1993, pp. 10–24. MR 1279832
- John P. Burgess, Effective enumeration of classes in a $\Sigma ^{1}_{1}$ equivalence relation, Indiana Univ. Math. J. 28 (1979), no. 3, 353–364. MR 529670, DOI 10.1512/iumj.1979.28.28024
- Edward G. Effros, Transformation groups and $C^{\ast }$-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, DOI 10.2307/1970381
- Su Gao, On automorphism groups of countable structures, J. Symbolic Logic 63 (1998), no. 3, 891–896. MR 1649067, DOI 10.2307/2586718
- A. Grzegorczyk, A. Mostowski, and C. Ryll-Nardzewski, Definability of sets in models of axiomatic theories, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 163–167. MR 163839
- Bradd Hart, Sergei Starchenko, and Matthew Valeriote, Vaught’s conjecture for varieties, Trans. Amer. Math. Soc. 342 (1994), no. 1, 173–196. MR 1191612, DOI 10.1090/S0002-9947-1994-1191612-0
- Greg Hjorth, Orbit cardinals: on the effective cardinalities arising as quotient spaces of the form $X/G$ where $G$ acts on a Polish space $X$, Israel J. Math. 111 (1999), 221–261. MR 1710740, DOI 10.1007/BF02810686 [12]hjorthclass G. Hjorth, Classification and orbit equivalence relations, Mathematical Surveys and Monographs, 75, American Mathematical Society, Providence, RI, 2000.
- Greg Hjorth and Slawomir Solecki, Vaught’s conjecture and the Glimm-Effros property for Polish transformation groups, Trans. Amer. Math. Soc. 351 (1999), no. 7, 2623–2641. MR 1467467, DOI 10.1090/S0002-9947-99-02141-8
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- H. Jerome Keisler, Model theory for infinitary logic. Logic with countable conjunctions and finite quantifiers, Studies in Logic and the Foundations of Mathematics, Vol. 62, North-Holland Publishing Co., Amsterdam-London, 1971. MR 0344115
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- Ramez L. Sami, Polish group actions and the Vaught conjecture, Trans. Amer. Math. Soc. 341 (1994), no. 1, 335–353. MR 1022169, DOI 10.1090/S0002-9947-1994-1022169-2
- Elisabeth Bouscaren, Martin’s conjecture for $\omega$-stable theories, Israel J. Math. 49 (1984), no. 1-3, 15–25. MR 788262, DOI 10.1007/BF02760643
- John R. Steel, On Vaught’s conjecture, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77) Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp. 193–208. MR 526920
- Jacques Stern, On Lusin’s restricted continuum problem, Ann. of Math. (2) 120 (1984), no. 1, 7–37. MR 750715, DOI 10.2307/2007070
- Robert Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974/75), 269–294. MR 363912, DOI 10.4064/fm-82-3-269-294
Bibliographic Information
- Greg Hjorth
- Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095-1555
- Email: greg@math.ucla.edu
- Received by editor(s): June 8, 1998
- Received by editor(s) in revised form: June 22, 2000
- Published electronically: September 18, 2000
- Additional Notes: The author’s research was partially supported by NSF grant DMS 96-22977.
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 14 (2001), 125-143
- MSC (2000): Primary 03E15
- DOI: https://doi.org/10.1090/S0894-0347-00-00349-0
- MathSciNet review: 1800351