Quiver varieties and finite dimensional representations of quantum affine algebras
HTML articles powered by AMS MathViewer
- by Hiraku Nakajima;
- J. Amer. Math. Soc. 14 (2001), 145-238
- DOI: https://doi.org/10.1090/S0894-0347-00-00353-2
- Published electronically: October 2, 2000
- HTML | PDF | Request permission
Abstract:
We study finite dimensional representations of the quantum affine algebra ${\mathbf {U}}_q(\widehat {\mathfrak {g}})$ using geometry of quiver varieties introduced by the author. As an application, we obtain character formulas expressed in terms of intersection cohomologies of quiver varieties.References
- Tatsuya Akasaka and Masaki Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997), no. 5, 839–867. MR 1607008, DOI 10.2977/prims/1195145020
- M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1–15. MR 642416, DOI 10.1112/blms/14.1.1
- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615. MR 702806, DOI 10.1098/rsta.1983.0017
- Paul Baum, William Fulton, and Robert MacPherson, Riemann-Roch and topological $K$ theory for singular varieties, Acta Math. 143 (1979), no. 3-4, 155–192. MR 549773, DOI 10.1007/BF02392091
- Jonathan Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), no. 3, 555–568. MR 1301623, DOI 10.1007/BF02099423
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480–497. MR 366940, DOI 10.2307/1970915
- James B. Carrell and Andrew John Sommese, $\textbf {C}^{\ast }$-actions, Math. Scand. 43 (1978/79), no. 1, 49–59. MR 523824, DOI 10.7146/math.scand.a-11762
- Vyjayanthi Chari and Andrew Pressley, Fundamental representations of Yangians and singularities of $R$-matrices, J. Reine Angew. Math. 417 (1991), 87–128. MR 1103907
- Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1994. MR 1300632
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras and their representations, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 59–78. MR 1357195, DOI 10.1007/BF00750760
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras at roots of unity, Represent. Theory 1 (1997), 280–328. MR 1463925, DOI 10.1090/S1088-4165-97-00030-7
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- C. De Concini, G. Lusztig, and C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), no. 1, 15–34. MR 924700, DOI 10.1090/S0894-0347-1988-0924700-2
- V. G. Drinfel′d, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212–216. MR 914215
- Geir Ellingsrud and Stein Arild Strømme, Towards the Chow ring of the Hilbert scheme of $\textbf {P}^2$, J. Reine Angew. Math. 441 (1993), 33–44. MR 1228610 FM E. Frenkel and E. Mukhin, Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras, preprint, math.QA/9911112. FR E. Frenkel and N. Reshetikhin, The $q$-characters of representations of quantum affine algebras and deformations of $\mathcal W$-algebras, preprint, math.QA/9810055.
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8 Gi-La V. Ginzburg, ${\mathfrak {g}}$-modules, Springer’s representations and bivariant Chern classes, Adv. in Math. 61 (1986), 1–48.
- Victor Ginzburg and Éric Vasserot, Langlands reciprocity for affine quantum groups of type $A_n$, Internat. Math. Res. Notices 3 (1993), 67–85. MR 1208827, DOI 10.1155/S1073792893000078
- Victor Ginzburg, Mikhail Kapranov, and Éric Vasserot, Langlands reciprocity for algebraic surfaces, Math. Res. Lett. 2 (1995), no. 2, 147–160. MR 1324698, DOI 10.4310/MRL.1995.v2.n2.a4 Gr-aff I. Grojnowski, Affinizing quantum algebras: From $D$-modules to $K$-theory, preprint, 1994.
- I. Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996), no. 2, 275–291. MR 1386846, DOI 10.4310/MRL.1996.v3.n2.a12 Hata G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Y. Yamada, Remarks on fermionic formula, preprint, math.QA/9812022.
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515–530. MR 1315461, DOI 10.1093/qmath/45.4.515 Kl M. Kleber, Finite dimensional representations of quantum affine algebras, preprint, math.QA/9809087.
- Peter B. Kronheimer and Hiraku Nakajima, Yang-Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990), no. 2, 263–307. MR 1075769, DOI 10.1007/BF01444534
- G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, DOI 10.1016/0001-8708(81)90038-4
- George Lusztig, Equivariant $K$-theory and representations of Hecke algebras, Proc. Amer. Math. Soc. 94 (1985), no. 2, 337–342. MR 784189, DOI 10.1090/S0002-9939-1985-0784189-2
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365–421. MR 1088333, DOI 10.1090/S0894-0347-1991-1088333-2
- G. Lusztig, Affine quivers and canonical bases, Inst. Hautes Études Sci. Publ. Math. 76 (1992), 111–163. MR 1215594, DOI 10.1007/BF02699432
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- George Lusztig, Cuspidal local systems and graded Hecke algebras. II, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217–275. With errata for Part I [Inst. Hautes Études Sci. Publ. Math. No. 67 (1988), 145–202; MR0972345 (90e:22029)]. MR 1357201, DOI 10.1090/S1088-4165-02-00172-3
- G. Lusztig, On quiver varieties, Adv. Math. 136 (1998), no. 1, 141–182. MR 1623674, DOI 10.1006/aima.1998.1729
- G. Lusztig, Bases in equivariant $K$-theory. II, Represent. Theory 3 (1999), 281–353. MR 1714628, DOI 10.1090/S1088-4165-99-00083-7 Lu-small —, Quiver varieties and Weyl group actions, preprint.
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144 Maf A. Maffei, Quiver varieties of type $A$, preprint, math.AG/9812142.
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- Hiraku Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), no. 2, 365–416. MR 1302318, DOI 10.1215/S0012-7094-94-07613-8
- Hiraku Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), no. 3, 515–560. MR 1604167, DOI 10.1215/S0012-7094-98-09120-7 Lecture —, Lectures on Hilbert schemes of points on surfaces, Univ. Lect. Ser. 18, AMS, 1999.
- Claus Michael Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), no. 3, 583–591. MR 1062796, DOI 10.1007/BF01231516
- Yoshihisa Saito, Quantum toroidal algebras and their vertex representations, Publ. Res. Inst. Math. Sci. 34 (1998), no. 2, 155–177. MR 1617066, DOI 10.2977/prims/1195144759
- Y. Saito, K. Takemura, and D. Uglov, Toroidal actions on level $1$ modules of $U_q(\widehat {\mathrm {sl}}_n)$, Transform. Groups 3 (1998), no. 1, 75–102. MR 1603798, DOI 10.1007/BF01237841
- Reyer Sjamaar and Eugene Lerman, Stratified symplectic spaces and reduction, Ann. of Math. (2) 134 (1991), no. 2, 375–422. MR 1127479, DOI 10.2307/2944350
- Reyer Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. of Math. (2) 141 (1995), no. 1, 87–129. MR 1314032, DOI 10.2307/2118628
- Toshiyuki Tanisaki, Hodge modules, equivariant $K$-theory and Hecke algebras, Publ. Res. Inst. Math. Sci. 23 (1987), no. 5, 841–879. MR 934674, DOI 10.2977/prims/1195176035
- R. W. Thomason, Algebraic $K$-theory of group scheme actions, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 539–563. MR 921490
- R. W. Thomason, Equivariant algebraic vs. topological $K$-homology Atiyah-Segal-style, Duke Math. J. 56 (1988), no. 3, 589–636. MR 948534, DOI 10.1215/S0012-7094-88-05624-4
- R. W. Thomason, Une formule de Lefschetz en $K$-théorie équivariante algébrique, Duke Math. J. 68 (1992), no. 3, 447–462 (French). MR 1194949, DOI 10.1215/S0012-7094-92-06817-7
- M. Varagnolo and E. Vasserot, Double-loop algebras and the Fock space, Invent. Math. 133 (1998), no. 1, 133–159. MR 1626481, DOI 10.1007/s002220050242 VV2 —, On the $K$-theory of the cyclic quiver variety, preprint, math.AG/9902091.
- E. Vasserot, Affine quantum groups and equivariant $K$-theory, Transform. Groups 3 (1998), no. 3, 269–299. MR 1640675, DOI 10.1007/BF01236876
Bibliographic Information
- Hiraku Nakajima
- Affiliation: Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
- MR Author ID: 248505
- Email: nakajima@kusm.kyoto-u.ac.jp
- Received by editor(s): December 9, 1999
- Received by editor(s) in revised form: July 10, 2000
- Published electronically: October 2, 2000
- Additional Notes: The author was supported by the Grant-in-aid for Scientific Research (No.11740011), the Ministry of Education, Japan, and National Science Foundation Grant #DMS 97-29992.
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 14 (2001), 145-238
- MSC (2000): Primary 17B37; Secondary 14D21, 14L30, 16G20, 33D80
- DOI: https://doi.org/10.1090/S0894-0347-00-00353-2
- MathSciNet review: 1808477