Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Double affine Hecke algebras and 2-dimensional local fields

Author: M. Kapranov
Journal: J. Amer. Math. Soc. 14 (2001), 239-262
MSC (2000): Primary 20C08; Secondary 20G25
Published electronically: September 25, 2000
MathSciNet review: 1800352
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give an interpretation of the double affine Hecke algebra of Cherednik as a (suitably regularized) algebra of double cosets of a group $G$ by a subgroup $\mathcal F$, extending the well-known interpretations of the finite and affine Hecke algebras. In this interpretation, $G$ consists of $K$-points of a simple algebraic group, where $K$ is a 2-dimensional local field such as $\mathbf Q_p((t))$ or $F_q((t_1))((t_2))$, and $\mathcal F$ is a certain analog of the Iwahori subgroup.

References [Enhancements On Off] (What's this?)

  • Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Mathematics, Vol. 269, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354652
  • M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, vol. 100, Springer-Verlag, Berlin, 1986. Reprint of the 1969 original. MR 883959
  • Kenneth S. Brown, Buildings, Springer-Verlag, New York, 1989. MR 969123
  • W. Casselman, The unramified principal series of ${\mathfrak p}$-adic groups. I. The spherical function, Compositio Math. 40 (1980), no. 3, 387–406. MR 571057
  • Ivan Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191–216. MR 1314036, DOI
  • Neil Chriss and Kamal Khuri-Makdisi, On the Iwahori-Hecke algebra of a $p$-adic group, Internat. Math. Res. Notices 2 (1998), 85–100. MR 1604812, DOI
  • V. G. Drinfel′d, Two-dimensional $l$-adic representations of the Galois group of a global field of characteristic $p$ and automorphic forms on ${\rm GL}(2)$, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 134 (1984), 138–156 (Russian, with English summary). Automorphic functions and number theory, II. MR 741857
  • [FP]FP T. Fimmel, A.N. Parshin, Introduction to Higher Adelic Theory, book in preparation.
  • P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125
  • [GG]GG H. Garland, I. Grojnowski, Affine Hecke algebras associated to Kac-Moody groups, preprint q-alg/9508019.
  • I. M. Gel′fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969. Translated from the Russian by K. A. Hirsch. MR 0233772
  • Victor Ginzburg, Mikhail Kapranov, and Eric Vasserot, Residue construction of Hecke algebras, Adv. Math. 128 (1997), no. 1, 1–19. MR 1451416, DOI
  • John W. Gray, Formal category theory: adjointness for $2$-categories, Lecture Notes in Mathematics, Vol. 391, Springer-Verlag, Berlin-New York, 1974. MR 0371990
  • V. S. Retakh, Massey operations in Lie superalgebras and differentials of the Quillen spectral sequence, Colloq. Math. 50 (1985), no. 1, 81–94 (Russian). MR 818089
  • [Kat]Kat K. Kato, The existence theorem for higher local class field theory, preprint M/80/43, IHES, 1980.
  • David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI
  • George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
  • George Lusztig, Intersection cohomology methods in representation theory, ICM-90, Mathematical Society of Japan, Tokyo; distributed outside Asia by the American Mathematical Society, Providence, RI, 1990. A plenary address presented at the International Congress of Mathematicians held in Kyoto, August 1990. MR 1127427
  • Hideya Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4) 2 (1969), 1–62 (French). MR 240214
  • John Milnor, Introduction to algebraic $K$-theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 72. MR 0349811
  • [Pa1]Pa1 A.N. Parshin, On the arithmetic of 2-dimensional schemes. I, Repartitions and residues, Russian Math. Izv. 40 (1976), 736-773.
  • A. N. Parshin, Vector bundles and arithmetic groups. I, Trudy Mat. Inst. Steklov. 208 (1995), no. Teor. Chisel, Algebra i Algebr. Geom., 240–265 (Russian). Dedicated to Academician Igor′Rostislavovich Shafarevich on the occasion of his seventieth birthday (Russian). MR 1730268
  • Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
  • R. W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 91–109. MR 510404, DOI

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 20C08, 20G25

Retrieve articles in all journals with MSC (2000): 20C08, 20G25

Additional Information

M. Kapranov
Affiliation: Department of Mathematics, University of Toronto, 100 St. George St., Toronto, Ontario, Canada M5S 3G3

Received by editor(s): June 8, 1999
Received by editor(s) in revised form: March 16, 2000, and July 25, 2000
Published electronically: September 25, 2000
Article copyright: © Copyright 2000 American Mathematical Society