The product replacement algorithm and Kazhdan’s property (T)
HTML articles powered by AMS MathViewer
- by Alexander Lubotzky and Igor Pak;
- J. Amer. Math. Soc. 14 (2001), 347-363
- DOI: https://doi.org/10.1090/S0894-0347-00-00356-8
- Published electronically: October 18, 2000
- PDF | Request permission
Abstract:
The “product replacement algorithm” is a commonly used heuristic to generate random group elements in a finite group $G$, by running a random walk on generating $k$-tuples of $G$. While experiments showed outstanding performance, the theoretical explanation remained mysterious. In this paper we propose a new approach to the study of the algorithm, by using Kazhdan’s property (T) from representation theory of Lie groups.References
- S. Andreadakis, On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. (3) 15 (1965), 239–268. MR 188307, DOI 10.1112/plms/s3-15.1.239 [Bb1]Bb1 L. Babai, Local expansion of vertex-transitive graphs and random generation in finite groups, in Proc $23^{rd}$ ACM STOC (1991), 164–174.
- László Babai, Randomization in group algorithms: conceptual questions, Groups and computation, II (New Brunswick, NJ, 1995) DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 28, Amer. Math. Soc., Providence, RI, 1997, pp. 1–17. MR 1444127, DOI 10.1090/dimacs/028/01 [BP]BP L. Babai, I. Pak, Strong bias of group generators: an obstacle to the “product replacement algorithm”, in Proc. $11^{\text {t}h}$ SODA (2000), 627–635.
- S. Bachmuth, Automorphisms of free metabelian groups, Trans. Amer. Math. Soc. 118 (1965), 93–104. MR 180597, DOI 10.1090/S0002-9947-1965-0180597-3
- H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for $\textrm {SL}_{n}\,(n\geq 3)$ and $\textrm {Sp}_{2n}\,(n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59–137. MR 244257
- John Cannon and Derek Holt (eds.), Computational algebra and number theory, Elsevier Ltd, Oxford, 1997. J. Symbolic Comput. 24 (1997), no. 3-4. MR 1484477
- M. Burger, Kazhdan constants for $\textrm {SL}(3,\textbf {Z})$, J. Reine Angew. Math. 413 (1991), 36–67. MR 1089795, DOI 10.1515/crll.1991.413.36
- Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer, and E. A. O’Brien, Generating random elements of a finite group, Comm. Algebra 23 (1995), no. 13, 4931–4948. MR 1356111, DOI 10.1080/00927879508825509
- Fan R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, vol. 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997. MR 1421568
- F. R. K. Chung and R. L. Graham, Random walks on generating sets for finite groups, Electron. J. Combin. 4 (1997), no. 2, Research Paper 7, approx. 14. The Wilf Festschrift (Philadelphia, PA, 1996). MR 1444154, DOI 10.37236/1322
- Persi Diaconis and Ronald Graham, The graph of generating sets of an abelian group, Colloq. Math. 80 (1999), no. 1, 31–38. MR 1684568, DOI 10.4064/cm-80-1-31-38
- P. Diaconis and L. Saloff-Coste, Walks on generating sets of abelian groups, Probab. Theory Related Fields 105 (1996), no. 3, 393–421. MR 1425868, DOI 10.1007/BF01192214
- P. Diaconis and L. Saloff-Coste, Walks on generating sets of groups, Invent. Math. 134 (1998), no. 2, 251–299. MR 1650316, DOI 10.1007/s002220050265
- M. J. Dunwoody, On $T$-systems of groups, J. Austral. Math. Soc. 3 (1963), 172–179. MR 153745, DOI 10.1017/S1446788700027919
- M. J. Dunwoody, Nielsen transformations, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford-New York-Toronto, Ont., 1970, pp. 45–46. MR 260852
- S. M. Gersten, A presentation for the special automorphism group of a free group, J. Pure Appl. Algebra 33 (1984), no. 3, 269–279. MR 761633, DOI 10.1016/0022-4049(84)90062-8
- Robert Gilman, Finite quotients of the automorphism group of a free group, Canadian J. Math. 29 (1977), no. 3, 541–551. MR 435226, DOI 10.4153/CJM-1977-056-3
- Karl W. Gruenberg, Relation modules of finite groups, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 25, American Mathematical Society, Providence, RI, 1976. MR 457538, DOI 10.1090/cbms/025
- Philip Hall, The collected works of Philip Hall, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1988. Compiled and with a preface by K. W. Gruenberg and J. E. Roseblade; With an obituary by Roseblade. MR 986732
- Pierre de la Harpe, A. Guyan Robertson, and Alain Valette, On the spectrum of the sum of generators for a finitely generated group, Israel J. Math. 81 (1993), no. 1-2, 65–96. MR 1231179, DOI 10.1007/BF02761298
- G. Hochschild, Introduction to affine algebraic groups, Holden-Day, Inc., San Francisco, Calif.-Cambridge-Amsterdam, 1971. MR 277535
- Roger E. Howe and Calvin C. Moore, Asymptotic properties of unitary representations, J. Functional Analysis 32 (1979), no. 1, 72–96. MR 533220, DOI 10.1016/0022-1236(79)90078-8 [K]K D. A. Kazhdan, On the connection of the dual space of a group with the structure of its closed subgroups (Russian), Funkcional. Anal. i Prilozhen. 1 (1967), 71–74. [LG]LG C. Leedham–Green, personal communication.
- Alexander Lubotzky, Discrete groups, expanding graphs and invariant measures, Progress in Mathematics, vol. 125, Birkhäuser Verlag, Basel, 1994. With an appendix by Jonathan D. Rogawski. MR 1308046, DOI 10.1007/978-3-0346-0332-4
- Alexander Lubotzky, Eigenvalues of the Laplacian, the first Betti number and the congruence subgroup problem, Ann. of Math. (2) 144 (1996), no. 2, 441–452. MR 1418904, DOI 10.2307/2118597
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966. MR 207802
- James McCool, A faithful polynomial representation of $\textrm {Out}\,F_3$, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 2, 207–213. MR 1002533, DOI 10.1017/S0305004100078026 [Mo]Mo S. Moses, On the congruence subgroup problem for tree lattices, in “Lie groups and ergodic theory (Mumbai, 1996)", Tata Inst. Fund. Res., Bombay, 1998, pp. 143–149. [P1]P1 I. Pak, Generating random elements in solvable groups, preprint (1999). [P2]P2 I. Pak, On the graph of generating sets of a simple group, preprint (1999). [P3]P3 I. Pak, What do we know about the product replacement random walk?, to appear in Groups and Computations III. [PB]PB I. Pak, S. Bratus, On sampling generating sets of finite groups and the product replacement algorithm, Proc. ISSAC’99, 1999, pp. 91–96. [PZ]PZ I. Pak, A. Żuk, in preparation, 2000. [Sc]Sc M. Schönert et al., GAP – Groups, Algorithms, and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, Germany, 1995. [Sh1]Sh1 Y. Shalom, Explicit Kazhdan constants for representations of semisimple and arithmetic groups, Annales de L’Institut Fourier, to appear. [Sh2]Sh2 Y. Shalom, Bounded generation and Kazhdan’s property (T), Publ. Math. IHES, to appear.
- Yehuda Shalom, Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan’s property (T), Trans. Amer. Math. Soc. 351 (1999), no. 8, 3387–3412. MR 1615966, DOI 10.1090/S0002-9947-99-02363-6
- S. P. Wang, On the Mautner phenomenon and groups with property $(\textrm {T})$, Amer. J. Math. 104 (1982), no. 6, 1191–1210. MR 681733, DOI 10.2307/2374057
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Alexander Lubotzky
- Affiliation: Department of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel
- MR Author ID: 116480
- Email: alexlub@math.huji.ac.il
- Igor Pak
- Affiliation: Department of Mathematics, Yale University, New Haven, Connecticut 06520
- Address at time of publication: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 293184
- ORCID: 0000-0001-8579-7239
- Received by editor(s): January 5, 2000
- Received by editor(s) in revised form: August 23, 2000
- Published electronically: October 18, 2000
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 14 (2001), 347-363
- MSC (2000): Primary 60B15; Secondary 05C25, 22D10, 60J10
- DOI: https://doi.org/10.1090/S0894-0347-00-00356-8
- MathSciNet review: 1815215