Braid groups are linear
HTML articles powered by AMS MathViewer
- by Stephen J. Bigelow PDF
- J. Amer. Math. Soc. 14 (2001), 471-486 Request permission
Abstract:
The braid group $B_n$ can be defined as the mapping class group of the $n$-punctured disk. A group is said to be linear if it admits a faithful representation into a group of matrices over $\mathbf R$. Recently Daan Krammer has shown that a certain representation of the braid groups is faithful for the case $n=4$. In this paper, we show that it is faithful for all $n$.References
- [Big99]bigelow Stephen Bigelow, The Burau representation is not faithful for $n=5$, Geometry and Topology 3 (1999), 397–404.
- M. S. Robertson, The variation of the sign of $V$ for an analytic function $U+iV$, Duke Math. J. 5 (1939), 512–519. MR 51, DOI 10.1215/S0012-7094-39-00542-9
- Joan S. Birman and Hans Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989), no. 1, 249–273. MR 992598, DOI 10.1090/S0002-9947-1989-0992598-X [Bur36]burau W. Burau, Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Ham. II (1936), 171–178.
- Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. MR 568308 [Kra99]krammer1 Daan Krammer, The braid group ${B}_4$ is linear, Preprint, 1999. [Kra00]krammer2 Daan Krammer, Braid groups are linear, Preprint, 2000.
- R. J. Lawrence, Homological representations of the Hecke algebra, Comm. Math. Phys. 135 (1990), no. 1, 141–191. MR 1086755, DOI 10.1007/BF02097660
- D. D. Long and M. Paton, The Burau representation is not faithful for $n\geq 6$, Topology 32 (1993), no. 2, 439–447. MR 1217079, DOI 10.1016/0040-9383(93)90030-Y
- John Atwell Moody, The Burau representation of the braid group $B_n$ is unfaithful for large $n$, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 379–384. MR 1098347, DOI 10.1090/S0273-0979-1991-16080-5
- Jun Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. 24 (1987), no. 4, 745–758. MR 927059
- L. Paris and D. Rolfsen, Geometric subgroups of surface braid groups, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2, 417–472 (English, with English and French summaries). MR 1697370, DOI 10.5802/aif.1680 [Tur]turaev Vladimir Turaev, Faithful Linear Representations of the Braid Groups, arXiv: math.GT/0006202. [Zin]zinno Matthew G. Zinno, On Krammer’s Representation of the Braid Group, arXiv: math.RT/0002136.
Additional Information
- Stephen J. Bigelow
- Affiliation: Department of Mathematics, University of Melbourne, Parkville, Victoria, Australia 3052
- Email: bigelow@unimelb.edu.au
- Received by editor(s): May 11, 2000
- Received by editor(s) in revised form: October 30, 2000
- Published electronically: December 13, 2000
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 14 (2001), 471-486
- MSC (2000): Primary 20F36; Secondary 57M07, 20C15
- DOI: https://doi.org/10.1090/S0894-0347-00-00361-1
- MathSciNet review: 1815219