Percolation in the hyperbolic plane
HTML articles powered by AMS MathViewer
- by Itai Benjamini and Oded Schramm;
- J. Amer. Math. Soc. 14 (2001), 487-507
- DOI: https://doi.org/10.1090/S0894-0347-00-00362-3
- Published electronically: December 28, 2000
- PDF | Request permission
Abstract:
We study percolation in the hyperbolic plane $\mathbb {H}^2$ and on regular tilings in the hyperbolic plane. The processes discussed include Bernoulli site and bond percolation on planar hyperbolic graphs, invariant dependent percolations on such graphs, and Poisson-Voronoi-Bernoulli percolation. We prove the existence of three distinct nonempty phases for the Bernoulli processes. In the first phase, $p\in (0,p_c]$, there are no unbounded clusters, but there is a unique infinite cluster for the dual process. In the second phase, $p\in (p_c,p_u)$, there are infinitely many unbounded clusters for the process and for the dual process. In the third phase, $p\in [p_u,1)$, there is a unique unbounded cluster, and all the clusters of the dual process are bounded. We also study the dependence of $p_c$ in the Poisson-Voronoi-Bernoulli percolation process on the intensity of the underlying Poisson process.References
- Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, Association for Computing Machinery (ACM), New York; Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. Held in New Orleans, LA, January 5–7, 1997. MR 1447644
- R. M. Burton and M. Keane, Density and uniqueness in percolation, Comm. Math. Phys. 121 (1989), no. 3, 501–505. MR 990777, DOI 10.1007/BF01217735
- R. M. Burton and M. Keane, Topological and metric properties of infinite clusters in stationary two-dimensional site percolation, Israel J. Math. 76 (1991), no. 3, 299–316. MR 1177347, DOI 10.1007/BF02773867
- I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Group-invariant percolation on graphs, Geom. Funct. Anal. 9 (1999), no. 1, 29–66. MR 1675890, DOI 10.1007/s000390050080
- Itai Benjamini, Russell Lyons, Yuval Peres, and Oded Schramm, Critical percolation on any nonamenable group has no infinite clusters, Ann. Probab. 27 (1999), no. 3, 1347–1356. MR 1733151, DOI 10.1214/aop/1022677450 [BLPS00]BLPS00 —, Uniform spanning forests, Ann. Probab. (2000), to appear. [BLS99]BLS99 I. Benjamini, R. Lyons, and O. Schramm, Percolation perturbations in potential theory and random walks, in M. Picardello and W. Woess, editors, Random Walks and Discrete Potential Theory, Sympos. Math., Cambridge University Press, Cambridge, 1999, pp. 56–84. Papers from the workshop held in Cortona, 1997.
- Itai Benjamini and Oded Schramm, Percolation beyond $\mathbf Z^d$, many questions and a few answers, Electron. Comm. Probab. 1 (1996), no. 8, 71–82. MR 1423907, DOI 10.1214/ECP.v1-978 [BS99]BS99 —, Recent progress on percolation beyond $\mathbb {Z}^d$, http://www.wisdom.weizmann.ac.il/~schramm/papers/pyond-rep/, 1999.
- Alan F. Beardon and Kenneth Stephenson, The uniformization theorem for circle packings, Indiana Univ. Math. J. 39 (1990), no. 4, 1383–1425. MR 1087197, DOI 10.1512/iumj.1990.39.39062
- James W. Cannon, William J. Floyd, Richard Kenyon, and Walter R. Parry, Hyperbolic geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, pp. 59–115. MR 1491098
- Peter G. Doyle and J. Laurie Snell, Random walks and electric networks, Carus Mathematical Monographs, vol. 22, Mathematical Association of America, Washington, DC, 1984. MR 920811, DOI 10.5948/UPO9781614440222
- G. R. Grimmett and C. M. Newman, Percolation in $\infty +1$ dimensions, Disorder in physical systems, Oxford Sci. Publ., Oxford Univ. Press, New York, 1990, pp. 167–190. MR 1064560
- Geoffrey Grimmett, Percolation, Springer-Verlag, New York, 1989. MR 995460, DOI 10.1007/978-1-4757-4208-4
- Olle Häggström, Infinite clusters in dependent automorphism invariant percolation on trees, Ann. Probab. 25 (1997), no. 3, 1423–1436. MR 1457624, DOI 10.1214/aop/1024404518
- Olle Häggström and Yuval Peres, Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously, Probab. Theory Related Fields 113 (1999), no. 2, 273–285. MR 1676835, DOI 10.1007/s004400050208
- Zheng-Xu He and O. Schramm, Hyperbolic and parabolic packings, Discrete Comput. Geom. 14 (1995), no. 2, 123–149. MR 1331923, DOI 10.1007/BF02570699
- Wilfried Imrich, On Whitney’s theorem on the unique embeddability of $3$-connected planar graphs, Recent advances in graph theory (Proc. Second Czechoslovak Sympos., Prague, 1974) Academia, Prague, 1975, pp. 303–306. (loose errata). MR 384588
- Steven P. Lalley, Percolation on Fuchsian groups, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), no. 2, 151–177 (English, with English and French summaries). MR 1614583, DOI 10.1016/S0246-0203(98)80022-8 [Lyo00]Lyo00 R. Lyons, Phase transitions on nonamenable graphs, J. Math. Phys. 41 (2000), no. 3, 1099–1126. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. [Lyo01]Lyo01 —, Probability on trees and networks, Cambridge University Press, 2001. Written with the assistance of Y. Peres, in preparation. Current version available at http://php.indiana.edu/~rdlyons/.
- W. Mader, Über den Zusammenhang symmetrischer Graphen, Arch. Math. (Basel) 21 (1970), 331–336 (German). MR 289343, DOI 10.1007/BF01220924
- Ronald Meester and Rahul Roy, Continuum percolation, Cambridge Tracts in Mathematics, vol. 119, Cambridge University Press, Cambridge, 1996. MR 1409145, DOI 10.1017/CBO9780511895357
- Igor Pak and Tatiana Smirnova-Nagnibeda, On non-uniqueness of percolation on nonamenable Cayley graphs, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 6, 495–500 (English, with English and French summaries). MR 1756965, DOI 10.1016/S0764-4442(00)00211-1 [Per00]Per00 Y. Peres, Percolation on nonamenable products at the uniqueness threshold, Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), no. 3, 395–406. [Sch99a]Sch99a R. H. Schonmann, Percolation in $\infty +1$ dimensions at the uniqueness threshold, in M. Bramson and R. Durrett, editors, Perplexing Probability Problems: Papers in Honor of Harry Kesten, Birkhäuser, Boston, 1999, pp. 53–67.
- Roberto H. Schonmann, Stability of infinite clusters in supercritical percolation, Probab. Theory Related Fields 113 (1999), no. 2, 287–300. MR 1676831, DOI 10.1007/s004400050209
- Paul Schmutz Schaller, Extremal Riemann surfaces with a large number of systoles, Extremal Riemann surfaces (San Francisco, CA, 1995) Contemp. Math., vol. 201, Amer. Math. Soc., Providence, RI, 1997, pp. 9–19. MR 1429190, DOI 10.1090/conm/201/02617
- Mark E. Watkins, Connectivity of transitive graphs, J. Combinatorial Theory 8 (1970), 23–29. MR 266804, DOI 10.1016/S0021-9800(70)80005-9 [Zva96]Zva96 A. Zvavitch, The critical probability for Voronoi percolation, MSc. thesis, Weizmann Institute of Science, 1996.
Bibliographic Information
- Itai Benjamini
- Affiliation: Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
- MR Author ID: 311800
- Email: itai@wisdom.weizmann.ac.il
- Oded Schramm
- Affiliation: Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
- Email: schramm@microsoft.com
- Received by editor(s): January 18, 2000
- Received by editor(s) in revised form: November 9, 2000
- Published electronically: December 28, 2000
- Additional Notes: The second author’s research was partially supported by the Sam and Ayala Zacks Professorial Chair at the Weizmann Institute
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc. 14 (2001), 487-507
- MSC (2000): Primary 82B43; Secondary 60K35, 60D05
- DOI: https://doi.org/10.1090/S0894-0347-00-00362-3
- MathSciNet review: 1815220