## Percolation in the hyperbolic plane

HTML articles powered by AMS MathViewer

- by Itai Benjamini and Oded Schramm PDF
- J. Amer. Math. Soc.
**14**(2001), 487-507 Request permission

## Abstract:

We study percolation in the hyperbolic plane $\mathbb {H}^2$ and on regular tilings in the hyperbolic plane. The processes discussed include Bernoulli site and bond percolation on planar hyperbolic graphs, invariant dependent percolations on such graphs, and Poisson-Voronoi-Bernoulli percolation. We prove the existence of three distinct nonempty phases for the Bernoulli processes. In the first phase, $p\in (0,p_c]$, there are no unbounded clusters, but there is a unique infinite cluster for the dual process. In the second phase, $p\in (p_c,p_u)$, there are infinitely many unbounded clusters for the process and for the dual process. In the third phase, $p\in [p_u,1)$, there is a unique unbounded cluster, and all the clusters of the dual process are bounded. We also study the dependence of $p_c$ in the Poisson-Voronoi-Bernoulli percolation process on the intensity of the underlying Poisson process.## References

*Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms*, Association for Computing Machinery (ACM), New York; Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. Held in New Orleans, LA, January 5–7, 1997. MR**1447644**- R. M. Burton and M. Keane,
*Density and uniqueness in percolation*, Comm. Math. Phys.**121**(1989), no. 3, 501–505. MR**990777**, DOI 10.1007/BF01217735 - R. M. Burton and M. Keane,
*Topological and metric properties of infinite clusters in stationary two-dimensional site percolation*, Israel J. Math.**76**(1991), no. 3, 299–316. MR**1177347**, DOI 10.1007/BF02773867 - I. Benjamini, R. Lyons, Y. Peres, and O. Schramm,
*Group-invariant percolation on graphs*, Geom. Funct. Anal.**9**(1999), no. 1, 29–66. MR**1675890**, DOI 10.1007/s000390050080 - Itai Benjamini, Russell Lyons, Yuval Peres, and Oded Schramm,
*Critical percolation on any nonamenable group has no infinite clusters*, Ann. Probab.**27**(1999), no. 3, 1347–1356. MR**1733151**, DOI 10.1214/aop/1022677450
[BLPS00]BLPS00 —, - Itai Benjamini and Oded Schramm,
*Percolation beyond $\mathbf Z^d$, many questions and a few answers*, Electron. Comm. Probab.**1**(1996), no. 8, 71–82. MR**1423907**, DOI 10.1214/ECP.v1-978
[BS99]BS99 —, - Alan F. Beardon and Kenneth Stephenson,
*The uniformization theorem for circle packings*, Indiana Univ. Math. J.**39**(1990), no. 4, 1383–1425. MR**1087197**, DOI 10.1512/iumj.1990.39.39062 - James W. Cannon, William J. Floyd, Richard Kenyon, and Walter R. Parry,
*Hyperbolic geometry*, Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, pp. 59–115. MR**1491098** - Peter G. Doyle and J. Laurie Snell,
*Random walks and electric networks*, Carus Mathematical Monographs, vol. 22, Mathematical Association of America, Washington, DC, 1984. MR**920811**, DOI 10.5948/UPO9781614440222 - G. R. Grimmett and C. M. Newman,
*Percolation in $\infty +1$ dimensions*, Disorder in physical systems, Oxford Sci. Publ., Oxford Univ. Press, New York, 1990, pp. 167–190. MR**1064560** - Geoffrey Grimmett,
*Percolation*, Springer-Verlag, New York, 1989. MR**995460**, DOI 10.1007/978-1-4757-4208-4 - Olle Häggström,
*Infinite clusters in dependent automorphism invariant percolation on trees*, Ann. Probab.**25**(1997), no. 3, 1423–1436. MR**1457624**, DOI 10.1214/aop/1024404518 - Olle Häggström and Yuval Peres,
*Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously*, Probab. Theory Related Fields**113**(1999), no. 2, 273–285. MR**1676835**, DOI 10.1007/s004400050208 - Zheng-Xu He and O. Schramm,
*Hyperbolic and parabolic packings*, Discrete Comput. Geom.**14**(1995), no. 2, 123–149. MR**1331923**, DOI 10.1007/BF02570699 - Wilfried Imrich,
*On Whitney’s theorem on the unique embeddability of $3$-connected planar graphs*, Recent advances in graph theory (Proc. Second Czechoslovak Sympos., Prague, 1974) Academia, Prague, 1975, pp. 303–306. (loose errata). MR**0384588** - Steven P. Lalley,
*Percolation on Fuchsian groups*, Ann. Inst. H. Poincaré Probab. Statist.**34**(1998), no. 2, 151–177 (English, with English and French summaries). MR**1614583**, DOI 10.1016/S0246-0203(98)80022-8
[Lyo00]Lyo00 R. Lyons, - W. Mader,
*Über den Zusammenhang symmetrischer Graphen*, Arch. Math. (Basel)**21**(1970), 331–336 (German). MR**289343**, DOI 10.1007/BF01220924 - Ronald Meester and Rahul Roy,
*Continuum percolation*, Cambridge Tracts in Mathematics, vol. 119, Cambridge University Press, Cambridge, 1996. MR**1409145**, DOI 10.1017/CBO9780511895357 - Igor Pak and Tatiana Smirnova-Nagnibeda,
*On non-uniqueness of percolation on nonamenable Cayley graphs*, C. R. Acad. Sci. Paris Sér. I Math.**330**(2000), no. 6, 495–500 (English, with English and French summaries). MR**1756965**, DOI 10.1016/S0764-4442(00)00211-1
[Per00]Per00 Y. Peres, - Roberto H. Schonmann,
*Stability of infinite clusters in supercritical percolation*, Probab. Theory Related Fields**113**(1999), no. 2, 287–300. MR**1676831**, DOI 10.1007/s004400050209 - Paul Schmutz Schaller,
*Extremal Riemann surfaces with a large number of systoles*, Extremal Riemann surfaces (San Francisco, CA, 1995) Contemp. Math., vol. 201, Amer. Math. Soc., Providence, RI, 1997, pp. 9–19. MR**1429190**, DOI 10.1090/conm/201/02617 - Mark E. Watkins,
*Connectivity of transitive graphs*, J. Combinatorial Theory**8**(1970), 23–29. MR**266804**, DOI 10.1016/S0021-9800(70)80005-9
[Zva96]Zva96 A. Zvavitch,

*Uniform spanning forests*, Ann. Probab. (2000), to appear. [BLS99]BLS99 I. Benjamini, R. Lyons, and O. Schramm,

*Percolation perturbations in potential theory and random walks*, in M. Picardello and W. Woess, editors, Random Walks and Discrete Potential Theory, Sympos. Math., Cambridge University Press, Cambridge, 1999, pp. 56–84. Papers from the workshop held in Cortona, 1997.

*Recent progress on percolation beyond $\mathbb {Z}^d$*, http://www.wisdom.weizmann.ac.il/~schramm/papers/pyond-rep/, 1999.

*Phase transitions on nonamenable graphs*, J. Math. Phys.

**41**(2000), no. 3, 1099–1126. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. [Lyo01]Lyo01 —,

*Probability on trees and networks*, Cambridge University Press, 2001. Written with the assistance of Y. Peres, in preparation. Current version available at http://php.indiana.edu/~rdlyons/.

*Percolation on nonamenable products at the uniqueness threshold*, Ann. Inst. H. Poincaré Probab. Statist.

**36**(2000), no. 3, 395–406. [Sch99a]Sch99a R. H. Schonmann,

*Percolation in $\infty +1$ dimensions at the uniqueness threshold*, in M. Bramson and R. Durrett, editors, Perplexing Probability Problems: Papers in Honor of Harry Kesten, Birkhäuser, Boston, 1999, pp. 53–67.

*The critical probability for Voronoi percolation*, MSc. thesis, Weizmann Institute of Science, 1996.

## Additional Information

**Itai Benjamini**- Affiliation: Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
- MR Author ID: 311800
- Email: itai@wisdom.weizmann.ac.il
**Oded Schramm**- Affiliation: Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
- Email: schramm@microsoft.com
- Received by editor(s): January 18, 2000
- Received by editor(s) in revised form: November 9, 2000
- Published electronically: December 28, 2000
- Additional Notes: The second author’s research was partially supported by the Sam and Ayala Zacks Professorial Chair at the Weizmann Institute
- © Copyright 2000 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**14**(2001), 487-507 - MSC (2000): Primary 82B43; Secondary 60K35, 60D05
- DOI: https://doi.org/10.1090/S0894-0347-00-00362-3
- MathSciNet review: 1815220