The number of Reidemeister moves needed for unknotting
HTML articles powered by AMS MathViewer
- by Joel Hass and Jeffrey C. Lagarias;
- J. Amer. Math. Soc. 14 (2001), 399-428
- DOI: https://doi.org/10.1090/S0894-0347-01-00358-7
- Published electronically: January 18, 2001
Abstract:
There is a positive constant $c_1$ such that for any diagram $\mathcal {D}$ representing the unknot, there is a sequence of at most $2^{c_1 n}$ Reidemeister moves that will convert it to a trivial knot diagram, where $n$ is the number of crossings in $\mathcal {D}$. A similar result holds for elementary moves on a polygonal knot $K$ embedded in the 1-skeleton of the interior of a compact, orientable, triangulated $PL$ 3-manifold $M$. There is a positive constant $c_2$ such that for each $t \geq 1$, if $M$ consists of $t$ tetrahedra and $K$ is unknotted, then there is a sequence of at most $2^{c_2 t}$ elementary moves in $M$ which transforms $K$ to a triangle contained inside one tetrahedron of $M$. We obtain explicit values for $c_1$ and $c_2$.References
- Colin C. Adams, The knot book, W. H. Freeman and Company, New York, 1994. An elementary introduction to the mathematical theory of knots. MR 1266837 AleBri26 J. W. Alexander and G. B. Briggs, On types of knotted curves, Ann. Math., 28 (1926/27), 562–586.
- David Avis and Hossam El-Gindy, Triangulating point sets in space, Discrete Comput. Geom. 2 (1987), no. 2, 99–111. MR 884221, DOI 10.1007/BF02187874
- Joan S. Birman and Michael D. Hirsch, A new algorithm for recognizing the unknot, Geom. Topol. 2 (1998), 175–220. MR 1658024, DOI 10.2140/gt.1998.2.175
- Joan S. Birman and William W. Menasco, Studying links via closed braids. IV. Composite links and split links, Invent. Math. 102 (1990), no. 1, 115–139. MR 1069243, DOI 10.1007/BF01233423
- Gerhard Burde and Heiner Zieschang, Knots, De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1985. MR 808776
- H. de Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid, Combinatorica 10 (1990), no. 1, 41–51. MR 1075065, DOI 10.1007/BF02122694
- Stefano Galatolo, On a problem in effective knot theory, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 9 (1998), no. 4, 299–306 (1999) (English, with English and Italian summaries). MR 1722788 Goe34 L. Goeritz, Bemerkungen zur knotentheorie, Abh. Math. Sem. Univ. Hamburg, 10 (1934), 201–210.
- Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245–375 (German). MR 141106, DOI 10.1007/BF02559591
- Joel Hass, Algorithms for recognizing knots and $3$-manifolds, Chaos Solitons Fractals 9 (1998), no. 4-5, 569–581. Knot theory and its applications. MR 1628743, DOI 10.1016/S0960-0779(97)00109-4
- Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger, The computational complexity of knot and link problems, J. ACM 46 (1999), no. 2, 185–211. MR 1693203, DOI 10.1145/301970.301971 HasLagPip97 J. Hass, J. C. Lagarias and N. Pippenger, The computational complexity of knot and link problems, preliminary report, Proc. 38th Annual Symposium on Foundations of Computer Science, (1997), 172–181.
- Joel Hass and Peter Scott, Intersections of curves on surfaces, Israel J. Math. 51 (1985), no. 1-2, 90–120. MR 804478, DOI 10.1007/BF02772960
- John Hempel, $3$-Manifolds, Annals of Mathematics Studies, No. 86, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1976. MR 415619
- John Hopcroft and Robert Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach. 21 (1974), 549–568. MR 359387, DOI 10.1145/321850.321852
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 248844
- William Jaco and J. Hyam Rubinstein, PL equivariant surgery and invariant decompositions of $3$-manifolds, Adv. in Math. 73 (1989), no. 2, 149–191. MR 987273, DOI 10.1016/0001-8708(89)90067-4
- William Jaco and Jeffrey L. Tollefson, Algorithms for the complete decomposition of a closed $3$-manifold, Illinois J. Math. 39 (1995), no. 3, 358–406. MR 1339832 Kne29 H. Kneser, Geschlossene Flachen in dreidimensionalen Mannigfaltigkeiten, Jahresbericht Math. Verein., 28 (1929), 248–260.
- Kunio Murasugi, Knot theory and its applications, Birkhäuser Boston, Inc., Boston, MA, 1996. Translated from the 1993 Japanese original by Bohdan Kurpita. MR 1391727 R1 H. Reidemeister, Knoten und Gruppen, Abh. Math. Sem., Univ. Hamburg, 5 (1926), 7–23. R1a H. Reidemeister, Elementare Begründang der Knotentheorie, Abh. Math. Sem. Univ. Hamburg, 5 (1926), 24–32.
- Rudolph E. Langer, The boundary problem of an ordinary linear differential system in the complex domain, Trans. Amer. Math. Soc. 46 (1939), 151–190 and Correction, 467 (1939). MR 84, DOI 10.1090/S0002-9947-1939-0000084-7
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, CA, 1976. MR 515288
- Colin Patrick Rourke and Brian Joseph Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer-Verlag, Berlin-New York, 1982. Reprint. MR 665919
- Alexander Schrijver, Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience Publication. MR 874114
- Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245–375 (German). MR 141106, DOI 10.1007/BF02559591 Seb90 A. Sebö, Hilbert bases, Caratheodory’s theorem and combinatorial optimization, in Integer Programming and Combinatorial Optimization, R. Kannan and W. R. Pulleybank, Eds., U. Waterloo Press, 1990, 431–455.
- D. J. A. Welsh, Complexity: knots, colourings and counting, London Mathematical Society Lecture Note Series, vol. 186, Cambridge University Press, Cambridge, 1993. MR 1245272, DOI 10.1017/CBO9780511752506
- Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94
- D. J. A. Welsh, Knots and braids: some algorithmic questions, Graph structure theory (Seattle, WA, 1991) Contemp. Math., vol. 147, Amer. Math. Soc., Providence, RI, 1993, pp. 109–123. MR 1224698, DOI 10.1090/conm/147/01166
- Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94
Bibliographic Information
- Joel Hass
- Affiliation: Department of Mathematics, University of California, Davis, California 95616
- Address at time of publication: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
- Email: hass@math.ucdavis.edu
- Jeffrey C. Lagarias
- Affiliation: AT&T Labs – Research, Florham Park, New Jersey 07932
- MR Author ID: 109250
- Email: jcl@research.att.com
- Received by editor(s): May 8, 1998
- Received by editor(s) in revised form: October 10, 2000
- Published electronically: January 18, 2001
- Additional Notes: The first author was partially supported by NSF grant DMS-9704286.
This paper grew out of work begun while the authors were visiting the Mathematical Sciences Research Institute in Berkeley in 1996/97. Research at MSRI was supported in part by NSF grant DMS-9022140. - © Copyright 2001 AT&T Corp.
- Journal: J. Amer. Math. Soc. 14 (2001), 399-428
- MSC (1991): Primary 57M25; Secondary 11Y16, 68W40
- DOI: https://doi.org/10.1090/S0894-0347-01-00358-7
- MathSciNet review: 1815217