Construction of tame supercuspidal representations
HTML articles powered by AMS MathViewer
- by Jiu-Kang Yu;
- J. Amer. Math. Soc. 14 (2001), 579-622
- DOI: https://doi.org/10.1090/S0894-0347-01-00363-0
- Published electronically: March 23, 2001
- PDF | Request permission
Abstract:
We give a quite general construction of irreducible supercuspidal representations and supercuspidal types (in the sense of Bushnell and Kutzko) of $p$-adic groups. In the tame case, the construction should include all known constructions, and it is expected that this gives all supercuspidal representations. We also give a conjectural Hecke algebra isomorphism, which can be used to analyze arbitrary irreducible admissible representations, following the ideas of Howe and Moy.References
- Jeffrey D. Adler, Refined anisotropic $K$-types and supercuspidal representations, Pacific J. Math. 185 (1998), no. 1, 1–32. MR 1653184, DOI 10.2140/pjm.1998.185.1 [AR]ar J.D. Adler and A. Roche: An intertwining result for $p$-adic groups, Canad. J. Math. 52, no. 3, 449–467 (2000)
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $\textrm {GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652, DOI 10.1515/9781400882496
- Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive $p$-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–634. MR 1643417, DOI 10.1112/S0024611598000574
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923, DOI 10.1007/BF02715544
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- Lawrence Corwin, A construction of the supercuspidal representations of $\textrm {GL}_n(F),\;F\;p$-adic, Trans. Amer. Math. Soc. 337 (1993), no. 1, 1–58. MR 1079053, DOI 10.1090/S0002-9947-1993-1079053-7 [De]db S. DeBacker, On supercuspidal characters of $\mathrm {GL}_\ell$, $\ell$ a prime, Ph. D. thesis, The University of Chicago (1997)
- Paul Gérardin, Weil representations associated to finite fields, J. Algebra 46 (1977), no. 1, 54–101. MR 460477, DOI 10.1016/0021-8693(77)90394-5
- Roger E. Howe, Tamely ramified supercuspidal representations of $\textrm {Gl}_{n}$, Pacific J. Math. 73 (1977), no. 2, 437–460. MR 492087, DOI 10.2140/pjm.1977.73.437
- Roger Howe and Allen Moy, Hecke algebra isomorphisms for $\textrm {GL}(n)$ over a $p$-adic field, J. Algebra 131 (1990), no. 2, 388–424. MR 1058553, DOI 10.1016/0021-8693(90)90182-N
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 396773, DOI 10.1007/978-1-4684-9443-3 [Ki]kim J. Kim, Hecke algebras of classical groups over $p$-adic fields and supercuspidal representations, Amer. J. Math. 121, 967–1029 (1999)
- Helmut Koch and Ernst-Wilhelm Zink, Zur Korrespondenz von Darstellungen der Galoisgruppen und der zentralen Divisionsalgebren über lokalen Körpern (der zahme Fall), Math. Nachr. 98 (1980), 83–119 (German). MR 623696, DOI 10.1002/mana.19800980110
- George Lusztig, Classification of unipotent representations of simple $p$-adic groups, Internat. Math. Res. Notices 11 (1995), 517–589. MR 1369407, DOI 10.1155/S1073792895000353
- Lawrence Morris, Level zero $\bf G$-types, Compositio Math. 118 (1999), no. 2, 135–157. MR 1713308, DOI 10.1023/A:1001019027614
- Lawrence Morris, Some tamely ramified supercuspidal representations of symplectic groups, Proc. London Math. Soc. (3) 63 (1991), no. 3, 519–551. MR 1127148, DOI 10.1112/plms/s3-63.3.519
- Erich Rothe, Topological proofs of uniqueness theorems in the theory of differential and integral equations, Bull. Amer. Math. Soc. 45 (1939), 606–613. MR 93, DOI 10.1090/S0002-9904-1939-07048-1
- Lawrence Morris, Tamely ramified intertwining algebras, Invent. Math. 114 (1993), no. 1, 1–54. MR 1235019, DOI 10.1007/BF01232662
- Allen Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), no. 4, 863–930. MR 853218, DOI 10.2307/2374518
- Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, DOI 10.1007/BF01231566
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI 10.1007/BF02566411 [P]P G. Prasad, Galois-fixed points in the Bruhat-Tits building of a reductive group, Bulletin Soc. Math. France, to appear.
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 450380, DOI 10.1007/978-1-4684-9458-7
- T. A. Springer, Reductive groups, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 3–27. MR 546587
- Robert Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63–92. MR 354892, DOI 10.1016/0001-8708(75)90125-5
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 29–69. MR 546588
Bibliographic Information
- Jiu-Kang Yu
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08540
- Address at time of publication: Department of Mathematics, University of Maryland, College Park, Maryland 20742
- Email: yu@math.princeton.edu, yu@math.umd.edu
- Received by editor(s): August 30, 1999
- Received by editor(s) in revised form: November 13, 2000
- Published electronically: March 23, 2001
- Additional Notes: The author was supported in part by grant DMS 9801633 from the National Science Foundation.
- © Copyright 2001 American Mathematical Society
- Journal: J. Amer. Math. Soc. 14 (2001), 579-622
- MSC (2000): Primary 22E50, 11F70; Secondary 20G25
- DOI: https://doi.org/10.1090/S0894-0347-01-00363-0
- MathSciNet review: 1824988