Construction of tame supercuspidal representations
Author:
Jiu-Kang Yu
Journal:
J. Amer. Math. Soc. 14 (2001), 579-622
MSC (2000):
Primary 22E50, 11F70; Secondary 20G25
DOI:
https://doi.org/10.1090/S0894-0347-01-00363-0
Published electronically:
March 23, 2001
MathSciNet review:
1824988
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give a quite general construction of irreducible supercuspidal representations and supercuspidal types (in the sense of Bushnell and Kutzko) of $p$-adic groups. In the tame case, the construction should include all known constructions, and it is expected that this gives all supercuspidal representations. We also give a conjectural Hecke algebra isomorphism, which can be used to analyze arbitrary irreducible admissible representations, following the ideas of Howe and Moy.
- Jeffrey D. Adler, Refined anisotropic $K$-types and supercuspidal representations, Pacific J. Math. 185 (1998), no. 1, 1–32. MR 1653184, DOI https://doi.org/10.2140/pjm.1998.185.1 [AR]ar J.D. Adler and A. Roche: An intertwining result for $p$-adic groups, Canad. J. Math. 52, no. 3, 449–467 (2000)
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of ${\rm GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652
- Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive $p$-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–634. MR 1643417, DOI https://doi.org/10.1112/S0024611598000574
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- Lawrence Corwin, A construction of the supercuspidal representations of ${\rm GL}_n(F),\;F\;p$-adic, Trans. Amer. Math. Soc. 337 (1993), no. 1, 1–58. MR 1079053, DOI https://doi.org/10.1090/S0002-9947-1993-1079053-7 [De]db S. DeBacker, On supercuspidal characters of $\mathrm {GL}_\ell$, $\ell$ a prime, Ph. D. thesis, The University of Chicago (1997)
- Paul Gérardin, Weil representations associated to finite fields, J. Algebra 46 (1977), no. 1, 54–101. MR 460477, DOI https://doi.org/10.1016/0021-8693%2877%2990394-5
- Roger E. Howe, Tamely ramified supercuspidal representations of ${\rm Gl}_{n}$, Pacific J. Math. 73 (1977), no. 2, 437–460. MR 492087
- Roger Howe and Allen Moy, Hecke algebra isomorphisms for ${\rm GL}(n)$ over a $p$-adic field, J. Algebra 131 (1990), no. 2, 388–424. MR 1058553, DOI https://doi.org/10.1016/0021-8693%2890%2990182-N
- James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. MR 0396773 [Ki]kim J. Kim, Hecke algebras of classical groups over $p$-adic fields and supercuspidal representations, Amer. J. Math. 121, 967–1029 (1999)
- Helmut Koch and Ernst-Wilhelm Zink, Zur Korrespondenz von Darstellungen der Galoisgruppen und der zentralen Divisionsalgebren über lokalen Körpern (der zahme Fall), Math. Nachr. 98 (1980), 83–119 (German). MR 623696, DOI https://doi.org/10.1002/mana.19800980110
- George Lusztig, Classification of unipotent representations of simple $p$-adic groups, Internat. Math. Res. Notices 11 (1995), 517–589. MR 1369407, DOI https://doi.org/10.1155/S1073792895000353
- Lawrence Morris, Level zero $\bf G$-types, Compositio Math. 118 (1999), no. 2, 135–157. MR 1713308, DOI https://doi.org/10.1023/A%3A1001019027614
- Lawrence Morris, Some tamely ramified supercuspidal representations of symplectic groups, Proc. London Math. Soc. (3) 63 (1991), no. 3, 519–551. MR 1127148, DOI https://doi.org/10.1112/plms/s3-63.3.519 [Mo3]mrs3 L.E. Morris, Tamely ramified supercuspidal representations of classical groups I, II, Ann. Sci. Éc. Norm. Sup. 24, 705–738 (1991), 25, 233–274 (1992) ;
- Lawrence Morris, Tamely ramified intertwining algebras, Invent. Math. 114 (1993), no. 1, 1–54. MR 1235019, DOI https://doi.org/10.1007/BF01232662
- Allen Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), no. 4, 863–930. MR 853218, DOI https://doi.org/10.2307/2374518
- Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408. MR 1253198, DOI https://doi.org/10.1007/BF01231566
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI https://doi.org/10.1007/BF02566411 [P]P G. Prasad, Galois-fixed points in the Bruhat-Tits building of a reductive group, Bulletin Soc. Math. France, to appear.
- Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380
- T. A. Springer, Reductive groups, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–27. MR 546587
- Robert Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63–92. MR 354892, DOI https://doi.org/10.1016/0001-8708%2875%2990125-5
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69. MR 546588
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 22E50, 11F70, 20G25
Retrieve articles in all journals with MSC (2000): 22E50, 11F70, 20G25
Additional Information
Jiu-Kang Yu
Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08540
Address at time of publication:
Department of Mathematics, University of Maryland, College Park, Maryland 20742
Email:
yu@math.princeton.edu, yu@math.umd.edu
Keywords:
Supercuspidal representation,
Hecke algebra
Received by editor(s):
August 30, 1999
Received by editor(s) in revised form:
November 13, 2000
Published electronically:
March 23, 2001
Additional Notes:
The author was supported in part by grant DMS 9801633 from the National Science Foundation.
Article copyright:
© Copyright 2001
American Mathematical Society