The McKay correspondence as an equivalence of derived categories
HTML articles powered by AMS MathViewer
- by Tom Bridgeland, Alastair King and Miles Reid;
- J. Amer. Math. Soc. 14 (2001), 535-554
- DOI: https://doi.org/10.1090/S0894-0347-01-00368-X
- Published electronically: March 22, 2001
- HTML | PDF | Request permission
Abstract:
Let $G$ be a finite group of automorphisms of a nonsingular three-dimensional complex variety $M$, whose canonical bundle $\omega _M$ is locally trivial as a $G$-sheaf. We prove that the Hilbert scheme $Y = G$-$\operatorname {Hilb}M$ parametrising $G$-clusters in $M$ is a crepant resolution of $X=M/G$ and that there is a derived equivalence (Fourier–Mukai transform) between coherent sheaves on $Y$ and coherent 𝐺-sheaves
on $M$. This identifies the K theory of $Y$ with the equivariant K theory of $M$, and thus generalises the classical McKay correspondence. Some higher-dimensional extensions are possible.
References
- M. F. Atiyah and F. Hirzebruch, The Riemann-Roch theorem for analytic embeddings, Topology 1 (1962), 151–166. MR 148084, DOI 10.1016/0040-9383(65)90023-6
- Michael Atiyah and Graeme Segal, On equivariant Euler characteristics, J. Geom. Phys. 6 (1989), no. 4, 671–677. MR 1076708, DOI 10.1016/0393-0440(89)90032-6
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25–44 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 23–42. MR 992977, DOI 10.1070/IM1990v034n01ABEH000583
- A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183–1205, 1337 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 3, 519–541. MR 1039961, DOI 10.1070/IM1990v035n03ABEH000716
- Tom Bridgeland, Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc. 31 (1999), no. 1, 25–34. MR 1651025, DOI 10.1112/S0024609398004998 Br2 T. Bridgeland and A. Maciocia, Fourier–Mukai transforms for K3 and elliptic fibrations, preprint, math.AG 9908022. CR A. Craw and M. Reid, How to calculate $A-\mathrm {Hilb}\mathbb {C}^3$, preprint, math.AG 9909085, 29 pp.
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839
- G. Gonzalez-Sprinberg and J.-L. Verdier, Construction géométrique de la correspondance de McKay, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, 409–449 (1984) (French). MR 740077, DOI 10.24033/asens.1454
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 222093, DOI 10.1007/BFb0080482 IN Y. Ito and H. Nakajima, McKay correspondence and Hilbert schemes in dimension three, preprint, math.AG 9803120; Topology 39 (2000) 1155–1191.
- Yukari Ito and Miles Reid, The McKay correspondence for finite subgroups of $\textrm {SL}(3,\mathbf C)$, Higher-dimensional complex varieties (Trento, 1994) de Gruyter, Berlin, 1996, pp. 221–240. MR 1463181 Ka D. Kaledin, The McKay correspondence for symplectic quotient singularities, preprint, math.AG 9907087. KV M. Kapranov and E. Vasserot, Kleinian singularities, derived categories and Hall algebras, preprint, math.AG 9812016; Math. Ann. 316 (2000) 565–576.
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 354798
- Shigeru Mukai, Duality between $D(X)$ and $D(\hat X)$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175. MR 607081, DOI 10.1017/S002776300001922X N I. Nakamura, Hilbert schemes of Abelian group orbits, to appear in J. Alg. Geom.
- Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, DOI 10.1090/S0894-0347-96-00174-9 R M. Reid, McKay correspondence, in Proc. of algebraic geometry symposium (Kinosaki, Nov 1996), T. Katsura (Ed.), 14–41, alg-geom 9702016.
- Shi-Shyr Roan, Minimal resolutions of Gorenstein orbifolds in dimension three, Topology 35 (1996), no. 2, 489–508. MR 1380512, DOI 10.1016/0040-9383(95)00018-6
- Paul Roberts, Intersection theorems, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 417–436. MR 1015532, DOI 10.1007/978-1-4612-3660-3_{2}3
- Paul C. Roberts, Multiplicities and Chern classes in local algebra, Cambridge Tracts in Mathematics, vol. 133, Cambridge University Press, Cambridge, 1998. MR 1686450, DOI 10.1017/CBO9780511529986 Vb M. Verbitsky, Holomorphic symplectic geometry and orbifold singularities, preprint, math.AG 9903175; Asian J. Math. 4 (2000) 553–563.
- Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque 239 (1996), xii+253 pp. (1997) (French, with French summary). With a preface by Luc Illusie; Edited and with a note by Georges Maltsiniotis. MR 1453167
Bibliographic Information
- Tom Bridgeland
- Affiliation: Department of Mathematics and Statistics, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
- MR Author ID: 635821
- ORCID: 0000-0001-5120-006X
- Email: tab@maths.ed.ac.uk
- Alastair King
- Affiliation: Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom
- Email: a.d.king@maths.bath.ac.uk
- Miles Reid
- Affiliation: Math Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- Email: miles@maths.warwick.ac.uk
- Received by editor(s): May 1, 2000
- Received by editor(s) in revised form: November 1, 2000
- Published electronically: March 22, 2001
- Additional Notes: Earlier versions of this paper carried the additional title “Mukai implies McKay”
- © Copyright 2001 American Mathematical Society
- Journal: J. Amer. Math. Soc. 14 (2001), 535-554
- MSC (2000): Primary 14E15, 14J30; Secondary 18E30, 19L47
- DOI: https://doi.org/10.1090/S0894-0347-01-00368-X
- MathSciNet review: 1824990
Dedicated: To Andrei Tyurin on his 60th birthday