On the modularity of elliptic curves over : Wild
-adic exercises
Authors:
Christophe Breuil, Brian Conrad, Fred Diamond and Richard Taylor
Journal:
J. Amer. Math. Soc. 14 (2001), 843-939
MSC (2000):
Primary 11G05; Secondary 11F80
DOI:
https://doi.org/10.1090/S0894-0347-01-00370-8
Published electronically:
May 15, 2001
MathSciNet review:
1839918
Full-text PDF Free Access
View in AMS MathViewer
Abstract | References | Similar Articles | Additional Information
Abstract: We complete the proof that every elliptic curve over the rational numbers is modular.
- [BBM] Pierre Berthelot, Lawrence Breen, and William Messing, Théorie de Dieudonné cristalline. II, Lecture Notes in Mathematics, vol. 930, Springer-Verlag, Berlin, 1982 (French). MR 667344
- [Br1] Christophe Breuil, Schémas en groupe et modules filtrés, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 2, 93–97 (French, with English and French summaries). MR 1669039, https://doi.org/10.1016/S0764-4442(99)80144-X
- [Br2]
C. Breuil, Groupes
-divisibles, groupes finis et modules filtrés, Annals of Math. 152 (2000), 489-549. CMP 2001:06
- [Ca1] Henri Carayol, Sur les représentations 𝑙-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468 (French). MR 870690
- [Ca2] Henri Carayol, Sur les représentations galoisiennes modulo 𝑙 attachées aux formes modulaires, Duke Math. J. 59 (1989), no. 3, 785–801 (French). MR 1046750, https://doi.org/10.1215/S0012-7094-89-05937-1
- [Co] Brian Conrad, Ramified deformation problems, Duke Math. J. 97 (1999), no. 3, 439–513. MR 1682986, https://doi.org/10.1215/S0012-7094-99-09718-1
- [CDT] Brian Conrad, Fred Diamond, and Richard Taylor, Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc. 12 (1999), no. 2, 521–567. MR 1639612, https://doi.org/10.1090/S0894-0347-99-00287-8
- [deJ] A. J. de Jong, Finite locally free group schemes in characteristic 𝑝 and Dieudonné modules, Invent. Math. 114 (1993), no. 1, 89–137. MR 1235021, https://doi.org/10.1007/BF01232664
- [De]
P. Deligne, Formes modulaires et représentations
-adiques, in: Lecture Notes in Math. 179, Springer-Verlag, 1971, pp. 139-172.
- [DS] Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530 (1975) (French). MR 379379
- [Di1] Fred Diamond, The refined conjecture of Serre, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 22–37. MR 1363493
- [Di2] Fred Diamond, On deformation rings and Hecke rings, Ann. of Math. (2) 144 (1996), no. 1, 137–166. MR 1405946, https://doi.org/10.2307/2118586
- [DT] Fred Diamond and Richard Taylor, Lifting modular mod 𝑙 representations, Duke Math. J. 74 (1994), no. 2, 253–269. MR 1272977, https://doi.org/10.1215/S0012-7094-94-07413-9
- [E] Torsten Ekedahl, An effective version of Hilbert’s irreducibility theorem, Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhäuser Boston, Boston, MA, 1990, pp. 241–249. MR 1104709
- [EGA] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- [Fa] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, https://doi.org/10.1007/BF01388432
- [FM] Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
- [G] Paul Gérardin, Facteurs locaux des algèbres simples de rang 4. I, Reductive groups and automorphic forms, I (Paris, 1976/1977) Publ. Math. Univ. Paris VII, vol. 1, Univ. Paris VII, Paris, 1978, pp. 37–77 (French). MR 680785
- [Kh]
C. Khare, A local analysis of congruences in the
case: Part II, Invent. Math. 143 (2001), no. 1, 129-155. CMP 2001:06
- [Kl] F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Teubner, 1884.
- [L] Robert P. Langlands, Base change for 𝐺𝐿(2), Annals of Mathematics Studies, vol. 96, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 574808
- [Man] J. Manoharmayum, Pairs of mod 3 and mod 5 representations arising from elliptic curves, Math. Res. Lett. 6 (1999), no. 5-6, 735–754. MR 1739229, https://doi.org/10.4310/MRL.1999.v6.n6.a12
- [Maz] B. Mazur, Number theory as gadfly, Amer. Math. Monthly 98 (1991), no. 7, 593–610. MR 1121312, https://doi.org/10.2307/2324924
- [Ra] Michel Raynaud, Schémas en groupes de type (𝑝,…,𝑝), Bull. Soc. Math. France 102 (1974), 241–280 (French). MR 419467
- [Ri] Kenneth A. Ribet, Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Springer, Berlin, 1977, pp. 17–51. Lecture Notes in Math., Vol. 601. MR 0453647
- [SBT] N. I. Shepherd-Barron and R. Taylor, 𝑚𝑜𝑑2 and 𝑚𝑜𝑑5 icosahedral representations, J. Amer. Math. Soc. 10 (1997), no. 2, 283–298. MR 1415322, https://doi.org/10.1090/S0894-0347-97-00226-9
- [Se1] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
- [Se2] Jean-Pierre Serre, Sur les représentations modulaires de degré 2 de 𝐺𝑎𝑙(\overline{𝑄}/𝑄), Duke Math. J. 54 (1987), no. 1, 179–230 (French). MR 885783, https://doi.org/10.1215/S0012-7094-87-05413-5
- [Sh1] Goro Shimura, On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J. 43 (1971), 199–208. MR 296050
- [Sh2] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kanô Memorial Lectures, No. 1. MR 0314766
- [Sh3] G. Shimura, Response to 1996 Steele Prize, Notices of the AMS 43 (1996), 1344-1347.
- [T] J. T. Tate, 𝑝-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin, 1967, pp. 158–183. MR 0231827
- [TW] Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, https://doi.org/10.2307/2118560
- [T] Jerrold Tunnell, Artin’s conjecture for representations of octahedral type, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 173–175. MR 621884, https://doi.org/10.1090/S0273-0979-1981-14936-3
- [We1] André Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149–156 (German). MR 207658, https://doi.org/10.1007/BF01361551
- [We2] André Weil, Scientific works. Collected papers. Vol. I (1926–1951), Springer-Verlag, New York-Heidelberg, 1979 (French). MR 537937
- [Wi] Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, https://doi.org/10.2307/2118559
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 11G05, 11F80
Retrieve articles in all journals with MSC (2000): 11G05, 11F80
Additional Information
Christophe Breuil
Affiliation:
Département de Mathématiques, CNRS, Université Paris-Sud, 91405 Orsay cedex, France
Email:
Christophe.BREUIL@math.u-psud.fr
Brian Conrad
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Address at time of publication:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Email:
bconrad@math.harvard.edu, bdconrad@math.lsa.umich.edu
Fred Diamond
Affiliation:
Department of Mathematics, Brandeis University, Waltham, Massachusetts 02454
Email:
fdiamond@euclid.math.brandeis.edu
Richard Taylor
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Email:
rtaylor@math.harvard.edu
DOI:
https://doi.org/10.1090/S0894-0347-01-00370-8
Keywords:
Elliptic curve,
Galois representation,
modularity
Received by editor(s):
February 28, 2000
Received by editor(s) in revised form:
January 1, 2001
Published electronically:
May 15, 2001
Additional Notes:
The first author was supported by the CNRS. The second author was partially supported by a grant from the NSF. The third author was partially supported by a grant from the NSF and an AMS Centennial Fellowship, and was working at Rutgers University during much of the research. The fourth author was partially supported by a grant from the NSF and by the Miller Institute for Basic Science.
Article copyright:
© Copyright 2001
American Mathematical Society