Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Hilbert schemes, polygraphs and the Macdonald positivity conjecture
HTML articles powered by AMS MathViewer

by Mark Haiman
J. Amer. Math. Soc. 14 (2001), 941-1006
DOI: https://doi.org/10.1090/S0894-0347-01-00373-3
Published electronically: May 29, 2001

Abstract:

We study the isospectral Hilbert scheme $X_{n}$, defined as the reduced fiber product of $(\mathbb {C}^{2})^{n}$ with the Hilbert scheme $H_{n}$ of points in the plane $\mathbb {C}^{2}$, over the symmetric power $S^{n}\mathbb {C}^{2} = (\mathbb {C}^{2})^{n}/S_{n}$. By a theorem of Fogarty, $H_{n}$ is smooth. We prove that $X_{n}$ is normal, Cohen-Macaulay and Gorenstein, and hence flat over $H_{n}$. We derive two important consequences. (1) We prove the strong form of the $n!$ conjecture of Garsia and the author, giving a representation-theoretic interpretation of the Kostka-Macdonald coefficients $K_{\lambda \mu }(q,t)$. This establishes the Macdonald positivity conjecture, namely that $K_{\lambda \mu }(q,t)\in {\mathbb N} [q,t]$. (2) We show that the Hilbert scheme $H_{n}$ is isomorphic to the $G$-Hilbert scheme $(\mathbb {C}^{2})^{n}{/\!\!/}S_n$ of Nakamura, in such a way that $X_{n}$ is identified with the universal family over $({\mathbb C}^2)^n{/\!\!/}S_n$. From this point of view, $K_{\lambda \mu }(q,t)$ describes the fiber of a character sheaf $C_{\lambda }$ at a torus-fixed point of $({\mathbb C}^2)^n{/\!\!/}S_n$ corresponding to $\mu$. The proofs rely on a study of certain subspace arrangements $Z(n,l)\subseteq (\mathbb {C}^{2})^{n+l}$, called polygraphs, whose coordinate rings $R(n,l)$ carry geometric information about $X_{n}$. The key result is that $R(n,l)$ is a free module over the polynomial ring in one set of coordinates on $(\mathbb {C}^{2})^{n}$. This is proven by an intricate inductive argument based on elementary commutative algebra.
References

    Bat99 Victor V. Batyrev, Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 1, 5–33, arXiv:math.AG/9803071

    .

    BaSt94 David Bayer and Michael Stillman, Macaulay: A computer algebra system for algebraic geometry, Version 3.0, Software distributed via ftp: math.columbia.edu/pub/bayer/Macaulay, 1994. BeGaHaTe99 F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions, Methods Appl. Anal. 6 (1999), no. 3, 363–420.
  • N. Bergeron and A. M. Garsia, On certain spaces of harmonic polynomials, Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991) Contemp. Math., vol. 138, Amer. Math. Soc., Providence, RI, 1992, pp. 51–86. MR 1199120, DOI 10.1090/conm/138/1199120
  • Joël Briançon, Description de $H\textrm {ilb}^{n}C\{x,y\}$, Invent. Math. 41 (1977), no. 1, 45–89. MR 457432, DOI 10.1007/BF01390164
  • BrKiRe00 Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 555–578.
  • William Brockman and Mark Haiman, Nilpotent orbit varieties and the atomic decomposition of the $q$-Kostka polynomials, Canad. J. Math. 50 (1998), no. 3, 525–537. MR 1629815, DOI 10.4153/CJM-1998-028-3
  • Jan Cheah, Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998), no. 1, 39–90. MR 1616606, DOI 10.2140/pjm.1998.183.39
  • Ivan Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191–216. MR 1314036, DOI 10.2307/2118632
  • Corrado De Concini and Claudio Procesi, Symmetric functions, conjugacy classes and the flag variety, Invent. Math. 64 (1981), no. 2, 203–219. MR 629470, DOI 10.1007/BF01389168
  • Geir Ellingsrud and Stein Arild Strømme, On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87 (1987), no. 2, 343–352. MR 870732, DOI 10.1007/BF01389419
  • Jacques Emsalem, Géométrie des points épais, Bull. Soc. Math. France 106 (1978), no. 4, 399–416 (French, with English summary). MR 518046, DOI 10.24033/bsmf.1879
  • Pavel I. Etingof and Alexander A. Kirillov Jr., Macdonald’s polynomials and representations of quantum groups, Math. Res. Lett. 1 (1994), no. 3, 279–296. MR 1302644, DOI 10.4310/MRL.1994.v1.n3.a1
  • John Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), 511–521. MR 237496, DOI 10.2307/2373541
  • Adriano M. Garsia and Mark Haiman, A graded representation model for Macdonald’s polynomials, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), no. 8, 3607–3610. MR 1214091, DOI 10.1073/pnas.90.8.3607
  • A. M. Garsia and M. Haiman, A remarkable $q,t$-Catalan sequence and $q$-Lagrange inversion, J. Algebraic Combin. 5 (1996), no. 3, 191–244. MR 1394305, DOI 10.1023/A:1022476211638
  • A. M. Garsia and C. Procesi, On certain graded $S_n$-modules and the $q$-Kostka polynomials, Adv. Math. 94 (1992), no. 1, 82–138. MR 1168926, DOI 10.1016/0001-8708(92)90034-I
  • Anatol N. Kirillov and Masatoshi Noumi, Affine Hecke algebras and raising operators for Macdonald polynomials, Duke Math. J. 93 (1998), no. 1, 1–39. MR 1620075, DOI 10.1215/S0012-7094-98-09301-2
  • Anatol N. Kirillov and Masatoshi Noumi, Affine Hecke algebras and raising operators for Macdonald polynomials, Duke Math. J. 93 (1998), no. 1, 1–39. MR 1620075, DOI 10.1215/S0012-7094-98-09301-2
  • Mark L. Green, Generic initial ideals, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 119–186. MR 1648665
  • Séminaire Bourbaki. Vol. 6, Société Mathématique de France, Paris, 1995 (French). Année 1960/61. [Year 1960/61]; Exposés 205–222; Reprint of the edition published by W. A. Benjamin, New York-Amsterdam, 1966 [ MR0197245 (33 #5420h)]. MR 1610868
  • Mark D. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 3 (1994), no. 1, 17–76. MR 1256101, DOI 10.1023/A:1022450120589
  • Mark Haiman, $t,q$-Catalan numbers and the Hilbert scheme, Discrete Math. 193 (1998), no. 1-3, 201–224. Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661369, DOI 10.1016/S0012-365X(98)00141-1
  • Hai99 —, Macdonald polynomials and geometry, New perspectives in geometric combinatorics (Billera, Björner, Greene, Simion, and Stanley, eds.), MSRI Publications, vol. 38, Cambridge University Press, 1999, pp. 207–254.
  • Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093, DOI 10.1007/BFb0080482
  • Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 0224620, DOI 10.1007/BFb0073971
  • R. Hotta and T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), no. 2, 113–127. MR 486164, DOI 10.1007/BF01418371
  • Yukari Ito and Iku Nakamura, McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 7, 135–138. MR 1420598
  • Y. Ito and I. Nakamura, Hilbert schemes and simple singularities, New trends in algebraic geometry (Warwick, 1996) London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 151–233. MR 1714824, DOI 10.1017/CBO9780511721540.008
  • Kal99 D. Kaledin, McKay correspondence for symplectic quotient singularities, Electronic preprint, arXiv:math.AG/9907087, 1999.
  • Shin-ichi Kato, Spherical functions and a $q$-analogue of Kostant’s weight multiplicity formula, Invent. Math. 66 (1982), no. 3, 461–468. MR 662602, DOI 10.1007/BF01389223
  • Anatol N. Kirillov and Masatoshi Noumi, Affine Hecke algebras and raising operators for Macdonald polynomials, Duke Math. J. 93 (1998), no. 1, 1–39. MR 1620075, DOI 10.1215/S0012-7094-98-09301-2
  • Anatol N. Kirillov and Masatoshi Noumi, Affine Hecke algebras and raising operators for Macdonald polynomials, Duke Math. J. 93 (1998), no. 1, 1–39. MR 1620075, DOI 10.1215/S0012-7094-98-09301-2
  • Hanspeter Kraft, Conjugacy classes and Weyl group representations, Young tableaux and Schur functors in algebra and geometry (Toruń, 1980), Astérisque, vol. 87, Soc. Math. France, Paris, 1981, pp. 191–205. MR 646820
  • Luc Lapointe and Luc Vinet, Operator construction of the Jack and Macdonald symmetric polynomials, Special functions and differential equations (Madras, 1997) Allied Publ., New Delhi, 1998, pp. 271–279. MR 1659750
  • Alain Lascoux and Marcel-Paul Schützenberger, Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 7, A323–A324 (French, with English summary). MR 472993
  • G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, DOI 10.1016/0001-8708(81)90038-4
  • George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
  • Mac88 I. G. Macdonald, A new class of symmetric functions, Actes du 20e Séminaire Lotharingien, vol. 372/S-20, Publications I.R.M.A., Strasbourg, 1988, pp. 131–171.
  • I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
  • I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996), Exp. No. 797, 4, 189–207. Séminaire Bourbaki, Vol. 1994/95. MR 1423624
  • Nak00 I. Nakamura, Hilbert schemes of abelian group orbits, Journal of Algebraic Geometry, to appear. Rei97 M. Reid, McKay correspondence, Electronic preprint, arXiv:alg-geom/9702016, 1997.
  • Anatol N. Kirillov and Masatoshi Noumi, Affine Hecke algebras and raising operators for Macdonald polynomials, Duke Math. J. 93 (1998), no. 1, 1–39. MR 1620075, DOI 10.1215/S0012-7094-98-09301-2
  • T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279–293. MR 491988, DOI 10.1007/BF01403165
  • Glenn Tesler, Isotypic decompositions of lattice determinants, J. Combin. Theory Ser. A 85 (1999), no. 2, 208–227. MR 1673936, DOI 10.1006/jcta.1998.2913
  • Ver00 Misha Verbitsky, Holomorphic symplectic geometry and orbifold singularities, Asian J. Math. 4 (2000), no. 3, 553–564, arXiv:math.AG/9903175

    .

    Wan99 Weiqiang Wang, Hilbert schemes, wreath products, and the McKay correspondence, Electronic preprint, arXiv:math.AG/9912104, 1999.
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14C05, 05E05, 14M05
  • Retrieve articles in all journals with MSC (2000): 14C05, 05E05, 14M05
Bibliographic Information
  • Mark Haiman
  • Affiliation: Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0112
  • Email: mhaiman@math.ucsd.edu
  • Received by editor(s): August 15, 2000
  • Received by editor(s) in revised form: January 29, 2001
  • Published electronically: May 29, 2001
  • Additional Notes: This research was supported in part by N.S.F. Mathematical Sciences grants DMS-9701218 and DMS-0070772.
  • © Copyright 2001 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 14 (2001), 941-1006
  • MSC (2000): Primary 14C05; Secondary 05E05, 14M05
  • DOI: https://doi.org/10.1090/S0894-0347-01-00373-3
  • MathSciNet review: 1839919